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RESUME

On démontre que I'isomorphisme de la cohomologie de Hochschild d’'une algébre poset
A a la cohomologie simpliciale du classifiant de la catégorie associé a A applique le
produit pré-Lie de Gerstenhaber au produit cup-one de Steenrod. Sur les cochaines, cette
application devient un isomorphisme des algébres différentielles graduées commutatives a
homotopie preés.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Hochschild cohomology, HH*, is a topic of current research as a target for topological quantum field theories [2,10,12]
with the cobordism between two disjoint copies of the unit circle, S!, to one copy of S! corresponding to the product in
HH*. The product on HH* is known to be graded commutative via two possible cochain homotopies, namely the pre-Lie
products [3]. These two homotopies are themselves not cochain homotopic, which mirrors the structure for the homology
of a double loop space. The simplicial (or singular) cohomology of a topological space is graded commutative under the
simplicial cup-product via two possible cochain homotopies, namely the cup-one products [11]. In this case, however, these
two cochain homotopies are themselves cochain homotopic via the cup-two product. In this note, we study poset algebras
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for which the Hochschild cochain complex is isomorphic as a differential graded homotopy commutative algebra to the
simplicial cochains on the classifying space of the category given by the poset algebra.

Let P ={i, j, ...} be a finite poset of cardinality N containing no cycles and partial order denoted <. Let k be a com-
mutative ring with unit and let A = A(P) be the poset algebra of upper triangular matrices with k-module basis given by
eij, i < j, subject to the relations

ejjexe = ej¢, j =k, ejjexe =0, j#k.

For P two types of cohomology can be computed, the Hochschild cohomology, HH*(A; A), and the simplicial cohomology,
H*(BC; k), where BC is the classifying space of the category C with objects given by the elements of P and morphisms

Mor(i, j) =ejj, i < J, Mor(i, j) =@, otherwise.
Composition of morphisms agrees with the product above. Note that A contains a separable subalgebra
S ={(e11, €22, ..., eNN),

namely the k-module generated by the elements e;;, i=1,2,..., N.
Let Hom,(A®*, A; S) denote the Hochschild cochains relative to the subalgebra S. Let C* denote the cochain complex
for H*(BC; k). There is map of cochain complexes

&y, : Homi (A®", A; §) — C"
that induces an isomorphism on cohomology [4,5]
®*: HH*(A; A) — H*(BC; k).

Moreover, ® = {®,},>0 preserves products, i.e.,, ® maps the Gerstenhaber product on Homy(A®*, A; S) to the simplicial
cup product on C*. In this note, we show that ® maps Gerstenhaber’s pre-Lie product on Homy(A®*, A; S) to Steenrod’s
cup-one product on C*. Thus, ® becomes an isomorphism between the differential graded homotopy commutative algebras
(in fact Eo-algebras) Homy(A®*, A; S) and C*.

2. Hochschild cohomology

Let A be an associative algebra over a unital commutative and associative ring k. To establish notation and set sign con-
ventions, recall that Hochschild’s original definition [8,9] for HH*(A; A), the Hochschild cohomology of A with coefficients
in the bimodule A is given as the homology of the cochain complex:

Homy (k, A) — Homy (A, A) > ... 2, Homy (A®", A) -2 Hom, (A®M+D | Ay 25

For a k-linear map f : A®" — A, the coboundary § f : A®@+1 _ A is given by
()1, az, ... ,ant1)

n
=aif(az, ... .an41) + (Z(—l)'f(m, az, ..., 0it1, ... ,an)) + (D" (@, a, -G
i=1

For f € Homi(A®P, A) and g € Homy(A®9, A), the Gerstenhaber (cup) product [3]
f(-:g c Homk(A®(p+q), A)
is given by
(f(-;g)(al, az, ..., Apyq) = f(a1, ..., ap) - gAp41, ..., Apyq).
Gerstenhaber proves that f ; g induces a graded commutative product on HH*(A; A). The cochain homotopy between f ; g
and (—1)pqg(~; f is given in terms of the partial compositions f (c;)g € Homy (A®P+4=D " A), where
(f(C]?)g)(aL g, ..y Upig—1) = f@r, ..., aj. g(@j11, .- Qjyg)s Qjgqits - Apyg—1)-

We use the following sign convention for the pre-Lie product of f and g:

p—1
fog=) (-1)P71=D@Df o g (1)

= ()



J. Lodder / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 339-343 341

For any separable algebra S, HH"(S; S) =0 for n > 1 and when S is a separable subalgebra of A, HH*(A; A) can be
computed from a subcomplex of Homy(A®*, A) consisting of S-relative cochains. Specifically, a cochain ¢ € Hom,(A®", A)
is S-relative if for all a1, aa, ..., a, € A and s € S, we have

p@i, ..., as, Qix1, ..., @) =@(@1, ..., @, SAit1, ..., Ap), 1 <i<n-—1,
p(say, ..., ap) =sp(ay, ..., ap), @@, ..., aps) =@(@, ..., p)s.

Let Homy(A®", A; S) denote the submodule of S-relative cochains. For a poset algebra A = A(P), and S = (e11, €22, ...,
enn), an element ¢ € Homi(A®", A; S) is determined by

@ (igiys Ciqiys - » Cin_qin)>
where ig i1 iz < ... <ip [5]. Moreover,
@ (igiys Ciqigs - -+ 5 Ciy_yin) = Aipiy

for some A € k. We shall introduce the notation

€ig, i1, 02, ... in = (Cigiy»> Ciqigs -+ » Cin_1in) = Cigi; & Cijiy @ ... €y iy,
@ (€ig, i1, i, ..., in) = g, iy, iz, ..., in)Cigin-

Elements ¢ € Homg(k, A; S) are of the form ¢(1) = Z,N=1 Aieji. For ¢ € Homi(A®", A; S),n=0, 1,2, ..., a direct calculation
yields

n+1

CoL . — J . -
(590)(910, 11,12, ..., ln+1) - Z(_]) )‘41'0, iy, ij, R A eloln_H s
j=0

where fj means that the index i; is deleted.

3. Simplicial cohomology

For a finite poset P = {i, j, ...} of cardinality N, consider the category C with objects given by the elements of P.
The morphisms Mor(i, j) = Hom(i, j) are given by the elements e;j, i < j, although to distinguish elements of A(P) from
morphisms, we introduce the notation

Hom(i, j) = fij, i< J, Hom(i, j) =@, otherwise.
Of course, fj; is the identity morphism, and the composition fj; fx, is defined only when j =k, in which case fj;fj¢ = fie.
The nerve N, (C) of this category is the simplicial set with NoC={i | i € P}, NiC={fj; | i < j},

NuC = {(figiys firigs -+ fipqin) ik € P, io i1 X ..o S ik

The face maps do, d1 : N1C — NoC are do(fj) = j and di(fij) =i. We introduce the notation fj; i, ... i, = (figi1» firizs -+ »
fin_1in)- For n > 2, the face maps dy : NyC — Np_1C, k=0,1,2,...,n, are given by

di(fig, i1, ..., in) = [

10, i1, ove s fk, O
The degeneracy sg : NoC — N1C is so(i) = fi = fij. Forn>1, s : NyC — Np1C, k=0, 1, 2, ..., n, the degeneracies are
Sk(fig, i1, orsin) = fig, i1y e iy s oor s in-
By definition, the classifying space BC is the geometric realization of N,C. The homology groups H.(BC; k) can be com-
puted from the chain complex
d d d d
k[NoC] <— --- «<— Kk[Ny_1C] «<— k[N,C] «<— - -,

where d = Z?:O(—l)idi. The cohomology groups H*(BC; k) are computed using the Homy-dual complex (Homy(k[N.C], k),
d*). For a € Homy(k[N,C], k), we introduce the notation

a(fig, iy, ....in) = Mig, i1, ... iy € K-
From the definition of d*, it follows that
n+1

d* @) (fig iy, i) = ) (DI
j=0

JIRE) in+1 ’

where fj means that i is deleted.
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Let C" = Homy (k[N,C], k). Clearly there is an isomorphism of cochain complexes
@ : Homi (A®*, A; S) — C*, &, :Homy(A®", A; S) — C"

given by the k-linear map determined via ®¢(¢)(i) = A;, where ¢(1) = Z?’:] Ajeji,

D (@) (fig, i1, ..., in) = Mg, i1, e in>

where @(€ig iy, ....ip) = (Aig. iy, ... in)€igi,- The inverse W : C* — Homy(A®*, A; S) is determined by Wo(x)(1) = Z,N:] Ui€ii,
where o (i) = w;, and

Wn (@) (€ig, iy, ..., in) = (Kig, i1, ... in)€igins
where o (fig, i), ... in) = Mig, i1, ... in-

The product on H*(BC; k) is the simplicial cup product. For o € CP, B € CY, we have « 5,3 € CPT4, with

(Oléﬂ)(tf) =a(fp(0))B(bg(0)),
where f},(0) is the front p-face of o € Np4C and bg(o) is the back g-face of o. Specifically,
(aélg)(fio,il, eviprg) = Sig iy, i) B ipr, o iprg)-

It can be easily checked that ® is a map of (differential graded) algebras, i.e., d)((péé) = @(@)g@(é). To show that & is

a map of (differential graded) homotopy commutative algebras, we must first specify the cochain homotopy between o 5,3
and (—l)Pq,Béa, namely the cup-one product [11]. For o € CP, B € CY, recall that the cup-one product, « ; -S,B e cpra—1

can be written in terms of the face maps d; as

p—1
@ - p)0) =) (=DP e - B)j(0). 0 €NpigoiC.
' j=0 '
(Oll'sﬂ)j(a) = a(djq1djy2 ... djgg—1)(0)) - B((dod1 ... dj—1djrg1djrg42 --- dprg—1)(0)). (2)

4. A map of homotopy commutative algebras
In this section we show that the cochain map
& : Hom (A®*, A; S) —» C*

takes Gerstenhaber’s pre-Lie product to Steenrod’s cup-one product.

Theorem 4.1. Let A = A(P) be the poset algebra for a finite poset P over a commutative unital ground ring k. Let ¢ €
Homy (A®P, A; S) and &€ € Homy(A®4, A; S). Then

(% («;)S) =(®(9) - PE);.

Proof. First, we offer a computational proof. For mg xm; < ... <mp and £o < €1 < ... < £g, let
@€mg,my, ....mp) = (kmg.my, ... mp)emom,» §(€eo, b1, ... 6,) = (e, 4, ..., £g)€00t4-
Then

@ (3?)5)(61'0, i1 s eprgot) = PCig,ir, iy ® g iy, oo ijng) @ Cijygo o iprgr)

= Mg, i1, oo i1 jaqu gt oo iprqet) it g ) @igipgi -
Thus,

(¢ (‘j?)%)(fio, eviprg1) = Qg iy, i ijags ijgis o iprqt) (B, i1, o i)

On the other hand, for o = fj, ; we have

150 ip+q—1 ’

(@(9) - PE);0) =L@ djr1djsz .. djrg-1(0)) - ®E)(dodi ... dj1djrgi1djagsa - dprg-1(0))

= Q@) fig, i1, s ijijrg o iprg-1) " PE i ijia, o ijeg) = Qi in, oo i ijaqs ijaqets s iprg1) (Mijijia, oo ijg)-
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Thus, D@ 0 6)=(P(p) - PE); for j=0,1,2,...,p—1. O
J s

An alternative proof of Theorem 4.1 can be constructed by noting that both Hom,(A®", A; S) and C* are multiplicative
operads [6], and ® is an isomorphism of multiplicative operads, which yields the above theorem.

Corollary 4.2. With ¢ and & as in Theorem 4.1, we have
D(poé) = D(¢) . -SCD(S)-

Proof. The proof follows from Theorem 4.1, the definition of the pre-Lie product (1) and the definition of the cup-one
product (2). O

Since the pre-Lie product agrees with Steenrod’s cup-one product for a poset algebra, the cup-two product is a cochain
homotopy between ¢ o £ and (—1)PTD@+Dg o ¢, or equivalently between

®(p) - PE), (—1)“’“><q+”d>(s>1-Sd><<p).

Let C* denote the k-module of normalized simplicial cochains of C* and let Hom(A®*, A; S) be the k-module of normalized,
relative Hochschild cochains [5, p. 205]. Then C* becomes an Eo-algebra via an action of the Barratt-Eccles operad [1] or
equivalently via an action of the Eilenberg-Zilber operad [7]. Since ® and W = ®~! map normalized cochains to normalized
cochains, Hom(A®*, A; S) inherits an E.-algebra structure via the isomorphism ®. In the special case of a poset algebra,
both the products and homotopies between the products agree on Hom(A®*, A; S) and C* as cochains via ®. In fact, the
jth partial composition of the endomorphism operad on Hom(A® A; S) is mapped to the jth summand of the cup-one
operation on C* via ®. As a result, ® : Hom(A®*, A; §) — C"is an isomorphism of E..-algebras. Thus, the cup-(i + 1) prod-
uct provides a cochain homotopy between the two possible compositions of cup-i products on Hom(A®*, A; S). Using the
cup-two product as a cochain homotopy between the two compositions of cup-one products, we recover the following [4]:

Corollary 4.3. For the poset algebra A = A(P), the Lie bracket on HH*(A; A) is zero, i.e., for cocycles ¢ € Homy(A®P, A; S) and
& € Hom (A®7, A; S),

=[@, El=@of — (—)PTD@Dg 5

as an element in HHPH4—1(A; A).
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