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II-functional from conformal geometry. Two crucial steps are to show that the P’-operator
Presented by Haim Brézis can be regarded as an elliptic pseudodifferential operator and to compute the leading-order
terms of the asymptotic expansion of the Green’s function for +/P’.
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RESUME

On construit des formes de contact & Q’-courbure constante sur les variétés de Cauchy-
Riemann de dimension 3 qui admettent une pseudo-forme de contact d’Einstein et
satisfont certaines conditions naturelles de positivité. Ces formes sont obtenues en
minimisant I'analogue en CR-géométrie de la II-fonctionelle en géométrie conforme. Cette
construction repose sur deux étapes cruciales. On montre que le P’-opérateur peut étre vu
comme un opérateur pseudo-differentiel elliptique et on calcule les termes dominants du
développement asymtotique de la forme de Green pour +/P'.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On an even-dimensional manifold (M2, g), the pair (P, Q) of the (critical) GJMS operator P and the (critical)
Q -curvature Q possesses many of the same properties of the pair (—A, K) on surfaces, where K is the Gauss curvature.
For example, P is a conformally covariant formally self-adjoint operator with leading-order term (—A)"?2 that annihilates
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constants [14,15], and Q is a Riemannian invariant with leading-order term cn(—A)¥R, where R is the scalar curvature,
which transforms in a particularly simple way within a conformal class [4]: if §=e?!g, then

e"Q =Q + Pu.

In particular, [ Q is conformally invariant on closed even-dimensional manifolds; indeed, it computes the Euler character-
istic modulo integrals of pointwise conformal invariants [1]. It also follows that metrics of constant Q -curvature within a
conformal class are in one-to-one correspondence with critical points of the functional

2 1 u
II[u]:/uPu—i—Z/Qu—E /Q log m/e .
M M M

M

This functional can always be minimized on the two-sphere [21] and on four-manifolds with positive Yamabe constant and
nonnegative Paneitz operator [2,9,16], with important applications to logarithmic functional determinants [5,21] and sharp
Onofri-type inequalities [2]. Due to the parallels between conformal and CR geometry, it is interesting to determine whether
a similar pair exists in the latter setting.

Works by Graham and Lee [13] and Hirachi [17] identified CR analogues of the Paneitz operator and Q -curvature in
dimension three. However, the kernel of the Paneitz operator contains the (generally infinite-dimensional) space P of CR
pluriharmonic functions, and the total Q -curvature is always zero. In particular, an Onofri-type inequality involving the
CR Paneitz operator cannot be satisfied. Branson, Fontana and Morpurgo overcame this latter issue on the CR spheres by
introducing a formally self-adjoint operator P’, which is CR covariant on CR pluriharmonic functions and in terms of which
one has the sharp Onofri-type inequality

2 1
/ / / (n+1u
/uPu+2/ Qu_n+1 /Q log Vol(s2n+1) / ¢ =0

S2n+1 S2n+1 S2n+1 §2n+1

for all u e W12 NP, where Q' is an explicit dimensional constant [6]. The construction of P’ is analogous to the con-
struction of the Q -curvature from the GJMS operators by analytic continuation in the dimension.
It was observed by the first- and third-named authors in dimension three [7] and by Hirachi in general dimension [18]

that one can define the P’-operator on general pseudohermitian manifolds (M2"+!, T1.0, 6). Roughly speaking, if P}, is

the CR GJMS operator of order 2n + 2 on a (2N + 1)-dimensional manifold, one defines P’ as the limit of ﬁPQ’Hﬂp
as N — n. This is made rigorous by explicit computation in dimension three [7] and via the ambient metric in general
dimension [18]. Regarded as a map from P to C>°(M)/P~, the P’-operator is CR covariant: if § =e%0, then e™+DIP’ — p’.

If & is a pseudo-Einstein contact form (cf. [7,18,20]), then the P’-operator is formally self-adjoint and annihilates con-
stants. Note that if M?"*1 is the boundary of a domain in C™t1, then the defining functions constructed by Fefferman [11]
induce pseudo-Einstein contact forms on M. One can construct a pseudohermitian invariant Q' on pseudo-Einstein mani-

folds by formally considering the limit (ﬁ)ng’nH(l) as N — n; this can be made rigorous by direct computation in di-

mension three [7] and via the ambient metric in general dimension [18]. Regarded as C%° (M) /P~ -valued, the Q’-curvature
transforms linearly with a change of contact form: if & =e?0 is also pseudo-Einstein, then

e2(n+1)a/ — Q/ + P/(O'). (1.1)

Since @ is pseudo-Einstein if and only if o € P [17,20], this makes sense. It follows from the properties of P’ that [ Q' is
independent of the choice of the pseudo-Einstein contact form. Direct computation on S2"*! shows that it is a nontrivial
invariant; indeed, in dimension three it is a nonzero multiple of the Burns-Epstein invariant [7]. In particular, the pair
(P’, Q") on pseudo-Einstein manifolds has the same properties as the pair (P, Q) on Riemannian manifolds.

If (M?"+1 710 9) is a compact pseudo-Einstein manifold, the self-adjointness of P’ and (1.1) imply that critical points
of the functional II: P — R defined by

2 1
— / ly = ’ (n+1u
II[u]_fuPu+2/Q u —— /Q log Vol (W) /e (1.2)
M M

M M

are in one-to-one correspondence with pseudo-Einstein contact forms with constant Q’-curvature (still regarded as
C%(M)/P~+-valued). The existence and classification of minimizers of the II-functional on the standard CR spheres was
given by Branson, Fontana, and Morpurgo [6]. In this note, we discuss the main ideas used by the authors to give criteria
that guarantee that minimizers exist for the II-functional on a given pseudo-Einstein three-manifold [8].

Theorem 1.1. Let (M3, T1.0, 9) be a compact, embeddable pseudo-Einstein three-manifold such that P’ > 0 and ker P’ = R. Suppose
additionally that
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/Q’G/\d9<167r2. (1.3)
M

Then there exists a function w € P that minimizes the II-functional. Moreover, the contact form :=e"g is such that Q' is constant.

The assumptions on P’ mean that the pairing u,v) = JuP'v defines a positive definite quadratic form on P. It is
important to emphasize that the conclusion is that Qj is constant as a (% (M) /P~+-valued invariant: a local formula for the
Q’-curvature was given by the first- and third-named authors [7], while we observe that, on S x $2 with any of its locally
spherical contact structures, there is no pseudo-Einstein contact form with Q' pointwise zero; see [8, Section 5].

As in the study of Riemannian four-manifolds (cf. [9,16]), the hypotheses of Theorem 1.1 can be replaced by the nonneg-
ativity of the pseudohermitian scalar curvature and of the CR Paneitz operator. Indeed, Chanillo, Chiu and the third-named
author proved that these assumptions imply that (M3, T1-9) is embeddable [10]; the first- and third-named authors proved
that these assumptions imply both that P’ > 0 with ker P’ =R and that [ Q' < 1672 with equality if and only if (M3, T1-0)
is CR equivalent to the standard CR three-sphere [7]; and Branson, Fontana and Morpurgo showed that minimizers of the
II-functional exist on the standard CR three-sphere [6].

Corollary 1.2. Let (M3, T1-9, 9) be a compact pseudo-Einstein manifold with nonnegative scalar curvature and nonnegative CR Paneitz
operator. Then there exists a function w € P which minimizes the II-functional. Moreover, the contact form 6 := e is such that Q'
is constant.

2. Sketch of the proof of Theorem 1.1

The proof of Theorem 1.1 proceeds analogously to the proof of the corresponding result on four-dimensional Riemannian
manifolds [9] with one important difference: P’ is defined as a C®°(M)/P-valued operator; in particular, it is a nonlocal
operator. Let 7: C®°(M) — P be the orthogonal projection with respect to the standard L%-inner product. A key observation
is that the operator P:=tP:P->Pisa self-adjoint elliptic pseudodifferential operator of order —2; see [8, Theorem 9.1].
This follows from the observation that, while the sub-Laplacian Ay is subelliptic, the Toeplitz operator T AT is a classical
elliptic pseudodifferential operator of order —1. This is achieved by writing A, = 20, +iT, relating T to the Szegd projector
S, and using well-known properties of the latter operator (cf. [3,19]).

Since fuP'v= qu’v for all u, v e P, it follows that P’ is a nonnegative operator with kerP' =R. In particular, the

positive square root (F/)l/2 of P is well defined and such that ker (?)1/2

fact that, as a local operator, P’ equals AlzJ plus lower-order terms [7], we then observe that the Green’s function of (ﬁ/)u 2
is of the form cp=2 + 0(p~'7¢) for p*(z,t) = |z|* + 2 the Heisenberg pseudo-distance, & € (0, 1), and ¢ the same constant
as the computation on the three-sphere [6]; for a more precise statement, see [8, Theorem 1.3].

From this point, the remaining argument is fairly standard. The above fact about the Green’s function of (ﬁ/)]/ 2 allows
us to apply the Adams-type theorem of Fontana and Morpurgo [12] to conclude that the former operator satisfies an
Adams-type inequality with the same constant as on the standard CR three-sphere. This has two important effects. First, it
implies that II-functional is coercive under the additional assumption [ Q' < 1672; see [8, Theorem 4.1]. Second, it implies
that if w e W22 NP satisfies

=R. Using the pseudodifferential calculus and the

T (P/w +Q — Aezw) =0,

then w € C®°(M); see [8, Theorem 4.2]. The former assumption allows us to minimize II within W22 NP and the latter
assumption yields the regularity of the minimizers. The final conclusion follows from the transformation formula (1.1) for
the Q’-curvature.
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