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Differential geometry

Extremal metrics for the Q ′-curvature in three dimensions
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We construct contact forms with constant Q ′-curvature on compact three-dimensional CR 
manifolds that admit a pseudo-Einstein contact form and satisfy some natural positivity 
conditions. These contact forms are obtained by minimizing the CR analogue of the 
II-functional from conformal geometry. Two crucial steps are to show that the P ′-operator 
can be regarded as an elliptic pseudodifferential operator and to compute the leading-order 
terms of the asymptotic expansion of the Green’s function for 

√
P ′ .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On construit des formes de contact à Q ′-courbure constante sur les variétés de Cauchy–
Riemann de dimension 3 qui admettent une pseudo-forme de contact d’Einstein et 
satisfont certaines conditions naturelles de positivité. Ces formes sont obtenues en 
minimisant l’analogue en CR-géométrie de la II-fonctionelle en géométrie conforme. Cette 
construction repose sur deux étapes cruciales. On montre que le P ′-opérateur peut être vu 
comme un opérateur pseudo-differentiel elliptique et on calcule les termes dominants du 
développement asymtotique de la forme de Green pour 

√
P ′ .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On an even-dimensional manifold (M2n, g), the pair (P , Q ) of the (critical) GJMS operator P and the (critical) 
Q -curvature Q possesses many of the same properties of the pair (−�, K ) on surfaces, where K is the Gauss curvature. 
For example, P is a conformally covariant formally self-adjoint operator with leading-order term (−�)n/2 that annihilates 
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constants [14,15], and Q is a Riemannian invariant with leading-order term cn(−�)
n−2

2 R , where R is the scalar curvature, 
which transforms in a particularly simple way within a conformal class [4]: if ĝ = e2u g , then

enσ Q̂ = Q + P u.

In particular, 
∫

Q is conformally invariant on closed even-dimensional manifolds; indeed, it computes the Euler character-
istic modulo integrals of pointwise conformal invariants [1]. It also follows that metrics of constant Q -curvature within a 
conformal class are in one-to-one correspondence with critical points of the functional

II[u] =
∫
M

u P u + 2
∫
M

Q u − 2

n

⎛
⎝∫

M

Q

⎞
⎠ log

⎛
⎝ 1

Vol(M)

∫
M

enu

⎞
⎠ .

This functional can always be minimized on the two-sphere [21] and on four-manifolds with positive Yamabe constant and 
nonnegative Paneitz operator [2,9,16], with important applications to logarithmic functional determinants [5,21] and sharp 
Onofri-type inequalities [2]. Due to the parallels between conformal and CR geometry, it is interesting to determine whether 
a similar pair exists in the latter setting.

Works by Graham and Lee [13] and Hirachi [17] identified CR analogues of the Paneitz operator and Q -curvature in 
dimension three. However, the kernel of the Paneitz operator contains the (generally infinite-dimensional) space P of CR 
pluriharmonic functions, and the total Q -curvature is always zero. In particular, an Onofri-type inequality involving the 
CR Paneitz operator cannot be satisfied. Branson, Fontana and Morpurgo overcame this latter issue on the CR spheres by 
introducing a formally self-adjoint operator P ′ , which is CR covariant on CR pluriharmonic functions and in terms of which 
one has the sharp Onofri-type inequality

∫
S2n+1

u P ′u + 2
∫

S2n+1

Q ′u − 2

n + 1

⎛
⎜⎝ ∫

S2n+1

Q ′

⎞
⎟⎠ log

⎛
⎜⎝ 1

Vol(S2n+1)

∫
S2n+1

e(n+1)u

⎞
⎟⎠ ≥ 0

for all u ∈ W n+1,2 ∩ P , where Q ′ is an explicit dimensional constant [6]. The construction of P ′ is analogous to the con-
struction of the Q -curvature from the GJMS operators by analytic continuation in the dimension.

It was observed by the first- and third-named authors in dimension three [7] and by Hirachi in general dimension [18]
that one can define the P ′-operator on general pseudohermitian manifolds (M2n+1, T 1,0, θ). Roughly speaking, if P N

2n+2 is 
the CR GJMS operator of order 2n + 2 on a (2N + 1)-dimensional manifold, one defines P ′ as the limit of 2

(N−n)
P N

2n+2|P
as N → n. This is made rigorous by explicit computation in dimension three [7] and via the ambient metric in general 
dimension [18]. Regarded as a map from P to C∞(M)/P⊥ , the P ′-operator is CR covariant: if θ̂ = eσ θ , then e(n+1)σ P̂ ′ = P ′ .

If θ is a pseudo-Einstein contact form (cf. [7,18,20]), then the P ′-operator is formally self-adjoint and annihilates con-
stants. Note that if M2n+1 is the boundary of a domain in Cn+1, then the defining functions constructed by Fefferman [11]
induce pseudo-Einstein contact forms on M . One can construct a pseudohermitian invariant Q ′ on pseudo-Einstein mani-

folds by formally considering the limit 
( 2

N−n

)2
P N

2n+2(1) as N → n; this can be made rigorous by direct computation in di-

mension three [7] and via the ambient metric in general dimension [18]. Regarded as C∞(M)/P⊥-valued, the Q ′-curvature 
transforms linearly with a change of contact form: if θ̂ = eσ θ is also pseudo-Einstein, then

e2(n+1) Q̂ ′ = Q ′ + P ′(σ ). (1.1)

Since θ̂ is pseudo-Einstein if and only if σ ∈ P [17,20], this makes sense. It follows from the properties of P ′ that 
∫

Q ′ is 
independent of the choice of the pseudo-Einstein contact form. Direct computation on S2n+1 shows that it is a nontrivial 
invariant; indeed, in dimension three it is a nonzero multiple of the Burns–Epstein invariant [7]. In particular, the pair 
(P ′, Q ′) on pseudo-Einstein manifolds has the same properties as the pair (P , Q ) on Riemannian manifolds.

If (M2n+1, T 1,0, θ) is a compact pseudo-Einstein manifold, the self-adjointness of P ′ and (1.1) imply that critical points 
of the functional II : P → R defined by

II[u] =
∫
M

u P ′u + 2
∫
M

Q ′u − 2

n + 1

⎛
⎝∫

M

Q ′
⎞
⎠ log

⎛
⎝ 1

Vol(M)

∫
M

e(n+1)u

⎞
⎠ (1.2)

are in one-to-one correspondence with pseudo-Einstein contact forms with constant Q ′-curvature (still regarded as 
C∞(M)/P⊥-valued). The existence and classification of minimizers of the II-functional on the standard CR spheres was 
given by Branson, Fontana, and Morpurgo [6]. In this note, we discuss the main ideas used by the authors to give criteria 
that guarantee that minimizers exist for the II-functional on a given pseudo-Einstein three-manifold [8].

Theorem 1.1. Let (M3, T 1,0, θ) be a compact, embeddable pseudo-Einstein three-manifold such that P ′ ≥ 0 and ker P ′ = R. Suppose 
additionally that
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∫
M

Q ′ θ ∧ dθ < 16π2. (1.3)

Then there exists a function w ∈P that minimizes the II-functional. Moreover, the contact form ̂θ := ewθ is such that Q̂ ′ is constant.

The assumptions on P ′ mean that the pairing (u, v) := ∫
u P ′v defines a positive definite quadratic form on P . It is 

important to emphasize that the conclusion is that Q̂ ′
4 is constant as a C∞(M)/P⊥-valued invariant: a local formula for the 

Q ′-curvature was given by the first- and third-named authors [7], while we observe that, on S1 × S2 with any of its locally 
spherical contact structures, there is no pseudo-Einstein contact form with Q ′ pointwise zero; see [8, Section 5].

As in the study of Riemannian four-manifolds (cf. [9,16]), the hypotheses of Theorem 1.1 can be replaced by the nonneg-
ativity of the pseudohermitian scalar curvature and of the CR Paneitz operator. Indeed, Chanillo, Chiu and the third-named 
author proved that these assumptions imply that (M3, T 1,0) is embeddable [10]; the first- and third-named authors proved 
that these assumptions imply both that P ′ ≥ 0 with ker P ′ =R and that 

∫
Q ′ ≤ 16π2 with equality if and only if (M3, T 1,0)

is CR equivalent to the standard CR three-sphere [7]; and Branson, Fontana and Morpurgo showed that minimizers of the 
II-functional exist on the standard CR three-sphere [6].

Corollary 1.2. Let (M3, T 1,0, θ) be a compact pseudo-Einstein manifold with nonnegative scalar curvature and nonnegative CR Paneitz 
operator. Then there exists a function w ∈ P which minimizes the II-functional. Moreover, the contact form ̂θ := ewθ is such that Q̂ ′
is constant.

2. Sketch of the proof of Theorem 1.1

The proof of Theorem 1.1 proceeds analogously to the proof of the corresponding result on four-dimensional Riemannian 
manifolds [9] with one important difference: P ′ is defined as a C∞(M)/P⊥-valued operator; in particular, it is a nonlocal 
operator. Let τ : C∞(M) →P be the orthogonal projection with respect to the standard L2-inner product. A key observation 
is that the operator P

′ := τ P ′ : P →P is a self-adjoint elliptic pseudodifferential operator of order −2; see [8, Theorem 9.1]. 
This follows from the observation that, while the sub-Laplacian �b is subelliptic, the Toeplitz operator τ�bτ is a classical 
elliptic pseudodifferential operator of order −1. This is achieved by writing �b = 2�b + iT , relating τ to the Szegő projector 
S , and using well-known properties of the latter operator (cf. [3,19]).

Since 
∫

u P ′v = ∫
u P ′

v for all u, v ∈ P , it follows that P
′

is a nonnegative operator with ker P
′ = R. In particular, the 

positive square root 
(

P
′)1/2

of P
′

is well defined and such that ker
(

P
)1/2 = R. Using the pseudodifferential calculus and the 

fact that, as a local operator, P ′ equals �2
b plus lower-order terms [7], we then observe that the Green’s function of 

(
P

′)1/2

is of the form cρ−2 + O (ρ−1−ε) for ρ4(z, t) = |z|4 + t2 the Heisenberg pseudo-distance, ε ∈ (0, 1), and c the same constant 
as the computation on the three-sphere [6]; for a more precise statement, see [8, Theorem 1.3].

From this point, the remaining argument is fairly standard. The above fact about the Green’s function of 
(

P
′)1/2

allows 
us to apply the Adams-type theorem of Fontana and Morpurgo [12] to conclude that the former operator satisfies an 
Adams-type inequality with the same constant as on the standard CR three-sphere. This has two important effects. First, it 
implies that II-functional is coercive under the additional assumption 

∫
Q ′ < 16π2; see [8, Theorem 4.1]. Second, it implies 

that if w ∈ W 2,2 ∩P satisfies

τ
(

P ′w + Q ′ − λe2w
)

= 0,

then w ∈ C∞(M); see [8, Theorem 4.2]. The former assumption allows us to minimize II within W 2,2 ∩ P and the latter 
assumption yields the regularity of the minimizers. The final conclusion follows from the transformation formula (1.1) for 
the Q ′-curvature.
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