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RESUME

Le présent papier traite le probléme de la régularité locale de solutions faibles a I'équation
de Navier-Stokes en €2 x (0, T) de terme de force f en L2. Nous prouvons que u est forte
dans un sous-cylindre Q, C Q x (0, T) si deux composantes de la vitesse u', u? satisfont
une condition de type Serrin.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Q@ c R? be an open set and 0 < T < +o00. We consider the Navier-Stokes equations in the cylindrical domain Q7 :=
Q x (0,T)

V-u=0, (1])
dul +m-Vul —Au +ap=fl, i=1,2,3, (12)

where u = (u!,u2,u3) and p are unknown velocity and pressure, respectively, and f = (f1, f2, f3) is a known exterior
force.
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The aim of the present paper is to show that if two components of u, say u' and u?, satisfy a Serrin condition in a sub
cylinder Q, C Qr, i.e.

i s 2 2 3 :
u' e L°(to —r°, to; LY(By)), ;+a=1, i=1,2, B<q=+00), (13)

then u is regular in Q; := (to — 2, tg) x By, where B, C Q is a ball of radius r.

The Serrin-type regularity criterion for the Navier-Stokes equations is studied a lot, especially in [6,12,13]. In the sense
of componentwize Serrin criteria, the two-component regularity is studied for the vorticity in [4], and for the velocity in [1],
which is published in [2]. There are many results on this problem for the two-component conditions, for example [3]. The
one-component regularity condition is studied in [9,10,16].

The local version of the Serrin-type condition is studied in [5] for the vorticity, and in [11] for the axially symmetric
case.

In this article, we study a local Serrin-type regularity criterion with two components, which completes the result in [1,2].
We remark that it is shown in [1,2] that if u!, u? satisfy (1.3) with g =6, s = oo, then the weak solution is regular.

We begin our discussion by providing the notations used throughout the paper. For points x, y € R3, by x- y we denote
the usual scalar product. Vector functions as well as tensor-valued functions are denoted by bold-face letters. For two
matrices A, B € R3*3, we denote by A:B the scalar product A:B := Zijzl AijBij.

The notations Wk 9(Q), W’g’q(Q) (1 <q <+4o0;k € N) stand for the usual Sobolev spaces. As it will be always clear,
throughout this Note we will not distinguish between spaces of scalar valued functions and spaces of vector- or tensor-
valued functions. For a given Banach space X, we denote by L%(a,b; X) the space of all Bochner measurable functions
f:(a,b) — X such that | f(-)||x € L°(a, b). Its norm is given by

1/s
(fab I fON% dt) if 1<s<+4o0,
1 fllLs@b;x) ==

essSsuUpPie(gp) I fFO)llx if s=+o0.

The space of smooth solenoidal vector fields with compact support in  will be denoted by CZ%; (€2). Then, we define:

Lgiv(ﬂ) := closure of CZ%;, (€2) with respect to the L? norm,
Wé:(ﬁv(ﬁ) := closure of Cg%;, (2) with respect to the WS’ 9 horm,
V2(Qr) :=L®(0, T; L*(R2)) N L?(0, T; W 2(Q)),
Viy(Qr):={ueV*Qr): V- -u=0ae.in Qr}.

Next, we are going to introduce the notion of a local weak solution to (1.1), (1.2) with finite energy.

Definition 1.1. Let f € L2(27). A vector function u is called a weak solution to (1.1), (1.2) with finite energy if u € VdZiV(QT) and
the following integral identity holds for all ¢ € CZ°(22) with V.- =0

/—u‘at(p—u@u:V¢+Vu:V<pdxdt:/f-(odxdt.
Qr Qr

Remark 1.2. By means of Sobolev’s embedding theorem, we get the embedding

) o p 2 3 3
Vaiv(€21) — L7(0, T; LP(£2)), E+E:5’ o, B €2, +oo].

Our main result is the following.

Theorem 1.3. Let f € L2(Q27). Let u € V2(Q7)) be a local weak solution with finite energy to (1.1), (1.2). Suppose that u', u? satisfy
(1.3) in a sub-cylinder Q, = Qr(xo, to) C 27. Then u is a strong solution in Q, i.e.

Viu e 12(Q,), Vu e L®(to — p?, to; L*(Bp)) VO <p <r.

We remark that initial and boundary conditions are not important since we consider the local regularity.
We will prove the theorem in the next sections. For that, we consider a decomposition of the pressure in Section 2, and
prove the regularity in the whole space under Serrin conditions in Section 3. Finally, in Section 4, we prove our theorem.
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2. Local pressure and local suitable weak solutions

We briefly recall the definition of the local pressure (for details, cf. [15]). Let U c R® be a bounded C' domain. By
W-19U) we denote the dual of Wg’q (U). Here, ¢’ stands for the dual exponent of g, that is, q%] if1<q<+o0, 1 if
q = +o0, and +oo if g = 1. Furthermore, we define the following subspaces of W1 9(U)

G 1) = {Vp e w4 ‘ pe Lg(U)},

Wer W)= [ —avew 1w [vewy ).

Here, Lg(U) denotes the space of all p € L9(U) such that fu fdx=0.
Based on the result [8, Theorem 2.1] we see that

W) =6 IU) @ ey (L),

and there exists a unique projection Ey : W—19(U) — G~1-9(U), such that

-1
div

vi—Eyview 1),

i.e. there exists a unique pair (v, p) € Wé’(ﬁv(U) X Lg(U), such that Vp = Eyv*, which is a weak solution to the Stokes
system

V.-v=0 ae.in U,
—AV+Vp=v* in W L9U),
v=0 ae.in oU.

In particular, we have the estimate

Iplla < cllvillyw-14
with a constant ¢ > 0 depending only on g and U. In case U coincides with a ball B, the constant ¢ depends only on q.
Furthermore, by virtue of [7, Theorem IV.5.1], we have the following regularity result.
Lemma 2.1. Let U C R? be a bounded C¥*1 domain. Then the restriction of Ey to W*=1-9(U) defines a projection in Wk=1-9(U). In
addition, there holds

IVpllwe-1.q4 < C||f||wk71.q7

where we have identified W% 9(U) with LI(U) and have used the canonical embedding LY(U) — W ~1-9(U) given as

(f,v):/f~vdx, fellU), vewyiU).
0]

Here, ¢ = const > 0 and depends on q and on the geometric property of U only. In particular, if U equals a ball By, this constant is
independent of r > 0.

By using the local projection Ey, we have the following lemma.

Lemma 2.2. et u € deiv(QT)~ Then for every bounded C? domain U C 2 the following identity holds true that for every @ € C(U x
(0, T)),

/—(u+V7rhm,U)-3tgo—u®u:Vgo—i—Vu:V(pdxdt

Qr

=/f-q)dxdt+/(n1,u +mu+m3,u)V - @dxdt,
Qr Qr
where
Vithmu = —Eu (), Vriu =—Eu((u-Viu),
Vmy,u = Ey(Au), Vs y = Ey(f).

For a detailed proof of Lemma 2.2, see [14, Lemma 2.4].
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We proceed by providing the definition of a local suitable weak solution.

Definition 2.3. Let u € Vgiv(QT) be a local weak solution to (1.1), (1.2). Let U C © be a bounded ? domain and 0 < t; <
to < T. Then u is called a local suitable weak solution to (1.1), (1.2) in U x (t1, tp) if

/d)lv(t)l dx+//¢|Vv| dxds

f

t
1 1
=3 / / |v|2(3t¢> + A¢) dxds<§|v|2 +mu+mu +n3,u)v - Vo dxds + f/qﬁf -vdxdt (2.1)
t1 U t7 U

for all nonnegative ¢ € C°(U x (t1,t2)) for a.e. t € (t1, t2), where

V=u-+Vrymuy.

Remark 2.4. Let u be a local suitable weak solution to (1.1), (1.2) in U x (t1, t). Using the method in [14], it can be checked
easily that each point zg € U x (t1, t2), with

1
limsup — / [Vu|?dxdt =0
r—-0 T

Qr(20)

is a regular point, i.e. that there exists o > 0 such that

Vu e V*(Qq (20)).
Now, we are in a position to prove the following local energy equality.

Lemma 2.5. Letu € Véiv(QT) be a local weak solution to (1.1), (1.2). Assume that u', u? satisfy (1.3) in a subcylinder Q. (xo, to). Then
u is a local suitable weak solution to (1.1), (1.2) in Q. In fact, (2.1) holds with equal sign.

Proof. In view of (1.1), we may write

3 2 2
u-Vu=V-ueu) = ZZaj(ujui) + Zaj(uiu3) + 2030303

j=1i=1 j=l
3
:ZZB (u]u)+281 (uu )—ZZu djul
j=11i=1 j=1 Jj=1
3 2
=ZZ (ujui)—Zaj(ufu3)+228ju3uj=V-A+b.
i=1i=1 =1 j=1

Owing to (1.3) and the embedding V?(Qr) < L¥(0, T; L?) with 2 + ﬂ =3 for all a, g € [2, +oc], we find

2 3 7
AC(Q) belto—rh o 'B). — 45 =5,

We define the local pressures 7y, 71,1, 1,2, 72 and 73 in the following ways:

y.8e(1,2).

Viym =—Eg, (W),  Vmi1=Ep (V-A),
Vi = Ep, (b), Vry = Ep. (Au), Vr3 = Eg. (f),

where Ep, : W~1-9(B;) - W~19(B,), (1 <q < +0o0), defined above. Setting v := u + V7, we see that
dv—AV=V-A+b—-V(m1+m2+m+m3)+f in Q;

in sense of distributions. Clearly, v € V2(Q;). Furthermore,

w1+ 13 e L2(Q)),

2 3 7
V2 € LY (to — 12, toL (By)), StiTy (v,8€l1,2]).
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Accordingly, the following local energy equality holds:
t

%/|v(t)|2¢dx+ / /IVV|2¢dxds
Br

t07r2 By
t

t
1
=3 / /|v|2(8t¢+A¢)dxds— / /A:V(vq))—i—(mj+n2+n3)V-(v¢)dxds

t07r2 By [‘071’2 By
t t
+ / fb-wp—Vm_zvd)dxds—i— / /d)f-vdxds
to—r2 Br to—12 Br

for all non-negative ¢ € C2°(Q,). This shows that u is a local suitable weak solution to (1.1), (1.2) in Q,. O

3. Global regularity

In the present section, we provide a Serrin-type condition on two velocity components in the whole space. Note that a
similar result has been proved in [2]. We have the following theorem.

Theorem 3.1. Let f € L? and let ug € Wdli'vz. Let u € V2(Q27) be a weak solution to (1.1)-(1.2) in R3 x (0, T). Suppose

. 2 3
ut e (0, T; L9), §+5=1’ i=1,2 B<q<+0). (3.1)

Then u is a strong solution in R3 x [t, T] forevery 0 < 7 < T.

Proof. Let 0 < 7 < T such that u(t) € W12, Assume that u is not strong on R3 x [t, T]. Let T < T, < T denote the first time
of blow up of u, the existence of which is guaranteed by the local-in-time existence of a strong solution. Let T < Ty < T,
be suitably fixed. Since u is strong in [, Tg], we may multiply both sides of (1.2) by —Au and integrate the result over
R3 x (To, to) (To <to < T). By integration by parts, this leads to

to to to
%nw(ro)nfz +//|Au|2dxdt=//ujajui3,<8kuidxdt—f/f-Audxdt—i—%lqu(To)H%z. (3.2)
To R3 To R3 To R3
Elementary,
to
//ujajuiakaku"dxdt
To R3
5 fo 5 fo to
=Z//ujajui8k81<uidxdt+Z//ujaju3a,<8ku3dxdt+//u383u38k3ku3dxdt
=17 g3 =17, g3 To R3
2 o 2 o
=_Z//Bkufajui81<uidxdt+Z//ujaju38k8ku3 dxdt
=17, g3 =115 g3
to to
—//Bku383u38ku3dxdt+%//83u3|Vu3|2dxdt
To R3 To R3

=h+1h+13+14.
Applying integration by parts, we calculate
2 o
I :Z//Bkujuiajakuidxdt.

=17, g3
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By means of Holder’s inequality, we get

Iy < c(lu s ero.mn0) + 1 s ro, 100 IV 8y (g 700y | Al 2, (3.3)
where

1 1 n 1 1 1 1

s y 2 7 q § 2
Clearly in view of (3.1) we get

2 n 3 3

y 8§ 2

By means of Sobolev’s embedding theorem, from (3.3) we infer

1 2 2 2
Il S CO(”H ”LS(To,T;Lq) + ”u ”LS(T(),T;Lq))(”vu”[_oo(TO.tO;LZ) + ”Au”LZ(TO,to;LZ))

with an absolute constant cg > 0.
Similarly, owing to ds3u3 = —d;u' — 8,u2, we estimate

1 2 2 2
I] < CO(”U ”LS(TO,T;Lq) + ”u ”LS(T(),T;Lq))(Hvu”Loo(TO,tO;LZ) + ”Au”Lz(To,to;Lz))

(=2,3,9.
Inserting the estimates of I1, I, I3 and I4 into the right-hand side of (3.2) and applying Young’s inequality, we are arrive
at

2 2
(V12 ey + 18U 2y )

< 1260(|Iu] llLs(To.7:19) + l|u? ||L5(T0,T;Lq)> (

2 2
|Vu”L°°(T0,EQ;L2) + ”Au”Lz(To,fo;Lz))

+c(If 1%+ IVu(To)lZ,).

In fact, we may choose Ty such that

1
1 2
”u ”LS(TO,T;LQ) + ||u ”LS(T(),T;Lq) < m
Accordingly,
”Vu”i‘x’(To,to;LZ) + ”Au”%Z(TO,tO;LZ) = 2C(|f||%2 + ||Vu(T0)||f2) (34)

As the right-hand side of (3.4) is independent of ty, we deduce from (3.4) that u is strong in [t, T,]. However, this contra-
dicts the definition of T,. Whence, the statement of the theorem is true.

4. Proof of Theorem 1.3

Let 0 < rg < r. By our assumption of Theorem 1.3 and Lemma 2.5, we see that u is a local suitable weak solution to (1.1),
(1.2) in Q. As it has been proved in [14], such solutions are regular outside a singular set ¥ C Q, whose one-dimensional
Hausdorff measure is zero (cf. Remark 2.4). In particular, ¥ does not contain a one-dimensional subset. Thus, there exists
0 <rg < p <r and a sufficiently small ¢ > 0, such that u is strong in the region

Ape X (to— p*.t0) :={p — & < |xo — X| < p + £} x (to — p*. to).

Let ¢ € C*®(R3) such that supp(¢) C Bpte and ¢ =1 on B, (xo).

Let mhm, 71,2 and 3 denote the local pressure on Q,, which has been defined in Lemma 2.2. As before, set v :=
U + Vthm. Since 7y, (t) is harmonic in By, mhy together with its derivatives D* 7y, for any multi-index o are continuous
on Qpye.

Next, set

w:i=P(v)=(v-VQ,

where P denotes the usual Helmholtz projection and Q is defined by the Newton potential N as follows:

Q:=-Nx*(Ve-v) in R3x (to— p to).
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Clearly, Q = A=1(V¢ - v). Furthermore, note that as supp(¢) C Ay . there holds V¢ - v € L®(tg — p?, to; W1-2) it follows
that

VQ € L®(to— p°,to; W), 3Q €L®(to — p*,to; W' ). (41)

Now, it remains to verify that w solves the Navier-Stokes equation in R3 x (to — p2, to) with right-hand side f e L2,
which is defined later.
First, let us recall that v solves the equation

v+ m-VYu—Au=-V@m +m+m)+ f in Q. (4.2)
We evaluate the convective term as follows
u-VYu=v-wvv)—-V-WVaym) = V- (Vaym ® v) — V- (Vtpm ® VThm)
=W -Vyv—w- -V)Vryny — (Vipm - V)v — %V|V7Thm|2
= (v-V)v+ fyq.
Clearly, f — ¢ f, € L. From (4.2) multiplying both sides by ¢, we deduce that
ow+¢(v-V)v— Aw
=2V VvV = ALv — ¢V + 2 +73) = V(0 Q + AQ) + ¢ f — ¢ f1. (4.3)

On the other hand, we find:

1
(W- V)W =(v-V)(EV) = (V) - V)VQ ~ (VQ - V)(&v) + 5 VIVQ [

1
E-V)v+(v-V)((C =Dv) = ((Ev) - V)VQ = (VQ - V)(¢V) + EVIVQI2

1
VYt fr+ S VIVQP

Observing (4.1) and recalling that Vu € V2(Q p4) we infer that f, € L?(to — p?, to; L?). Inserting this identity into (4.3), we
arrive at

IW+(w-VIYW—Aw=—-VP+f in R3x (to— p?, to),

where
1
PI:C(m+nz+7t3)+3tQ—AQ+§IVQ|2,
f=Vim+m+m)+ e f —Cf1+ f2—2VE-Vv— (AD)v.

As f e L%(tg — p2, to; L), the claim follows thanks to Theorem 3.1.
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