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We prove that there cannot exist square-integrable nonzero solutions to the Helmholtz 
equation in an axisymmetric conical domain whose vertex angle is greater than π . This 
implies in particular the absence of eigenvalues embedded in the essential spectrum of a 
large class of partial differential operators that coincide with the Laplacian in the conical 
domain.
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r é s u m é

On démontre qu’il ne peut exister de solutions non nulles et de carré intégrable de 
l’équation de Helmholtz dans un domaine conique axisymétrique dont l’angle au sommet 
est strictement supérieur à π . Ceci implique en particulier l’absence de valeurs propres 
plongées dans le spectre essentiel pour de nombreux opérateurs qui coïncident avec le 
laplacien dans le domaine conique.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The purpose of this note is to prove the following result.

Theorem 1.1. Let k > 0, θ ∈ (0, π/2) and � := {(x, y) ∈ R
d × R; y > −|x| tan θ} with d ≥ 1 (see Fig. 1). If u ∈ L2(�) satisfies the 

Helmholtz equation

�u + k2 u = 0 in � (1)

in the distributional sense, then u = 0.
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Fig. 1. The conical domain � in the two-dimensional case (d = 1).

This theorem is optimal in the sense that it becomes false if θ = 0. Indeed it is easy to construct solutions to the 
Helmholtz equation that are square-integrable in a half-plane (see Remark 3).

As the well-known Rellich’s uniqueness theorem [8] and succeeding results (see, e.g., [9]), this theorem points out a 
forbidden behavior of solutions to the Helmholtz equation in an unbounded domain. In particular, it is not related to 
boundary conditions (no assumption is made on the behavior of u near the boundary of �). Most Rellich type results 
involve a particular Besov space related to the boundedness of the energy flux and lead to the uniqueness of the solution 
to scattering problems. Our theorem involves a more restrictive functional framework: the assumption u ∈ L2(�) rather 
expresses the boundedness of the total energy in �, which leads to the absence of so-called trapped modes (or bound states) 
or equivalently, the absence of eigenvalues embedded in the continuous spectrum of a large class of operators that coincide 
with the Laplacian in �. For instance, if we consider the equation

�u + k2n2 u = 0 in R
d+1,

with a variable index of refraction n = n(x) (say, bounded) such that n = 1 in �, Theorem 1.1 together with the unique 
continuation principle (see, e.g., [6]) shows that this equation has no square-integrable nonzero solutions.

Our initial motivation concerned the possible existence of trapped modes in waveguides. Such solutions are known to 
occur for local perturbations of closed uniform waveguides, that is, cylindrical infinite pipes with bounded cross-section (see 
[7] for a review). Trapped modes also appear in the case of curved closed waveguides (see, e.g., [4] and more recently [3]). 
The situation differs singularly in the case of open waveguides, that is, when the transverse section becomes unbounded, 
as for instance optical fibers or immersed pipes. It is now understood that trapped modes do not exist either in local 
perturbations of open straight waveguides [1,5] or in straight junctions of waveguides [2]. The example above shows that this 
result holds true for curved open waveguides provided that the core of the waveguide and other possible inhomogeneities 
are located in Rd+1 \ �.

The proof of Theorem 1.1 is based on the two-dimensional case, which is explained in sections 2 and 3. Section 4 then 
shows how to deal with higher dimensions as well as some possible extensions of Theorem 1.1. Following [1,2,5] (inspired 
by the pioneering work of Weder [10]), the main ingredients of the proof are, on the one hand, a Fourier representation
of a solution u to (1) in a half-plane and on the other hand, an analyticity property. The Fourier representation consists in 
decomposing u as a superposition of modes, which are either propagative or evanescent. Since we are only interested in 
square-integrable solutions, the components associated with propagative modes must vanish. As in the above-mentioned 
papers, the fact that the components associated with evanescent modes also vanish results from the analyticity property. 
Here the key idea to obtain this property is to reuse the Fourier representation in two oblique directions.

2. Fourier representation in a half-plane

Let F denote the usual Fourier transform defined for a function ϕ ∈ L1(R) by

Fϕ(ξ) := 1√
2π

∫
R

ϕ(x)e−ixξ dx for ξ ∈R,

which can be classically extended to the Schwartz space of tempered distributions.

Proposition 2.1. For given ε > 0 and k > 0, let u be a solution to the Helmholtz equation (1) in the half-plane 	ε := R × (−ε, +∞)

such that u ∈ L2(	ε). Then

u(x,y) = 1√
2π

∫
|ξ |>k

ϕ̂(ξ)eixξ−y

√
ξ2−k2

dξ for all (x,y) ∈ 	0, (2)

where ϕ̂ :=Fu(· , 0) has the following properties:

ϕ̂(ξ) = 0 if |ξ | < k and
ϕ̂(ξ)eε|ξ |

|ξ2 − k2|1/4
∈ L2(R). (3)
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Remark 1. Formula (2) appears as a modal representation of u (analogous to the plane wave spectrum representation of Fourier 
optics) in the sense that it can be interpreted as a superposition of the modes exp(ixξ − y

√
ξ2 − k2) where ϕ̂(ξ) stands 

for the modal amplitude. These modes are propagative in the x-direction and evanescent in the y-direction, since |ξ | > k in 
(2). The first property in (3) expresses actually the absence of propagative modes in the y-direction, which results from the 
assumption u ∈ L2(	ε).

Remark 2. The domain 	ε in which u is supposed to satisfy the Helmholtz equation, is larger than the domain 	0 where 
the representation (2) is written. This allows us to avoid the consequences of a possible poor regularity of u at the boundary 
of 	ε and yields a strong decay of ϕ̂(ξ) as |ξ | tends to ∞, which is expressed by the exponential term in the second 
property of (3). Note that by the Cauchy–Schwarz inequality, this property implies that ϕ̂ ∈ L1(R), which shows that the 
integral in (2) makes sense.

Remark 3. Using the arguments of the proof below, it is readily seen that conversely to the statement of Proposition 2.1, if 
ϕ̂ satisfies (3), then the function u defined by (2) belongs to L2(	0) and is a solution to the Helmholtz equation (1) in 	0. 
This shows that Theorem 1.1 is no longer true for θ = 0.

Proof. As u ∈ L2(	ε), we know that for almost every y ∈ (−ε, +∞), function u(· , y) belongs to L2(R) so that we can define 
its Fourier transform ̂u(ξ, y) :=F{u(· , y)}(ξ). By the Parseval’s identity,

û(· ,y) ∈ L2(R) and ‖̂u(· ,y)‖L2(R) = ‖u(· ,y)‖L2(R).

As a consequence,

û ∈ L2(R× (−ε,+∞)) and ‖̂u‖L2(R×(−ε,+∞)) = ‖u‖L2(	ε). (4)

Applying the Fourier transform to the Helmholtz equation yields

∂2û

∂y
2

+ (k2 − ξ2) û = 0 in D′(−ε,+∞) for a.e. ξ ∈R.

Hence

û(ξ,y) = Â(ξ)e−(y+ε)
√

ξ2−k2 + B̂(ξ)e+(y+ε)
√

ξ2−k2
,

for some functions Â(ξ) and B̂(ξ), where 
√· denotes a given determination of the complex square root such that 

√
z ∈ R

+
if z ∈ R

+ . From (4), we have û(ξ, ·) ∈ L2(−ε, +∞) for almost every ξ ∈ R, which implies that, on the one hand, Â(ξ) =
B̂(ξ) = 0 if |ξ | < k, on the other hand, B̂(ξ) = 0 if |ξ | > k. Therefore

û(ξ,y) = Â(ξ)e−(y+ε)
√

ξ2−k2
where Â(ξ) = 0 if |ξ | < k. (5)

Noticing that

‖̂u‖2
L2(R×(−ε,+∞))

=
∫

|ξ |>k

| Â(ξ)|2
+∞∫

−ε

e−2(y+ε)
√

ξ2−k2
dy dξ =

∫
|ξ |>k

| Â(ξ)|2 dξ

2
√

ξ2 − k2
,

we infer that |ξ2 − k2|−1/4 Â(ξ) ∈ L2(R). Setting ϕ̂(ξ) := Â(ξ) e−ε
√

ξ2−k2
and using the inverse Fourier transform of (5), the 

conclusion follows. �
The following corollary plays an essential role in the proof of Theorem 1.1.

Corollary 2.1. For any half-line �α := {(t cosα, t sinα) ∈ R
2; t > 0} where α ∈ (0, π), a solution u ∈ L2(	ε) to the Helmholtz 

equation (1) in 	ε is such that u|�α ∈ L1(�α).

Proof. By the Fourier representation (2) of u, we have

+∞∫
0

|u(t cosα, t sinα)|dt = 1√
2π

+∞∫
0

∣∣∣∣∣∣∣
∫

|ξ |>k

ϕ̂(ξ)eiξ t cos α−√
ξ2−k2 t sin α dξ

∣∣∣∣∣∣∣ dt

≤ 1√
2π

+∞∫
0

∫
|ξ |>k

|ϕ̂(ξ)|e−√
ξ2−k2 t sin α dξ dt

≤ 1√
2π

∫ |ϕ̂(ξ)|√
ξ2 − k2 sinα

dξ,
|ξ |>k
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using Fubini’s theorem. We deduce from the Cauchy–Schwarz inequality that

+∞∫
0

|u(t cosα, t sinα)|dt ≤ 1√
2π

∥∥∥∥ ϕ̂(ξ)eε|ξ |

|ξ2 − k2|1/4

∥∥∥∥
L2(R)

⎛⎜⎝ ∫
|ξ |>k

e−2ε|ξ |√
ξ2 − k2 sin2 α

dξ

⎞⎟⎠
1/2

,

where the right-hand side is bounded, according to (3). �
3. Proof of Theorem 1.1 in the two-dimensional case (d = 1)

The proof is based on three uses of Proposition 2.1. In order to simplify the presentation as regards the role of ε in 
this proposition, we redefine the domain � of Theorem 1.1 as � := {(x, y) ∈ R

2; y + 
 > −|x| tan θ} for some 
 > 0 (which 
amounts to a simple change of variable).

In the first use of Proposition 2.1, we simply notice that u is a square-integrable solution to the Helmholtz equation in 
the half-plane {y > −
}. Hence, the conclusions of the proposition hold true with (x, y) = (x, y) and ε = 
. In particular,

ϕ̂ := Fu(· ,0) is such that ϕ̂(ξ) = 0 if |ξ | < k. (6)

The key argument consists in proving that ϕ̂(ξ) extends to an analytic function in a complex vicinity of the real axis. As ϕ̂
vanishes on the interval (−k, +k), analyticity implies that it must vanish everywhere, that is, ϕ̂(ξ) = 0 for all ξ (recall that 
the zeros of an analytic function are isolated). The Fourier representation (2) then tells us that u vanishes in the half-plane 
{y > 0}, so also in the whole domain � by virtue of the unique continuation principle, which completes the proof of 
Theorem 1.1.

It remains to prove the analyticity of ϕ̂(ξ). To do this, the trick is to split the definition ϕ̂ :=Fu(· , 0) in the form

ϕ̂(ξ) = 1√
2π

0∫
−∞

u(x,0)e−ixξ dx + 1√
2π

+∞∫
0

u(x,0)e−ixξ dx (7)

and to express u(· , 0)|R+ and u(· , 0)|R− by using again Proposition 2.1 in two half-planes contained in � defined respec-
tively by the equations y > −x tan θ and y > +x tan θ . Using both changes of variables(

x

y

)
=

(
cos θ ∓ sin θ

± sin θ cos θ

)(
x
y

)
which map respectively the half-planes {y > ∓x tan θ} to 	0, we obtain the following Fourier representations:

u(x, y) = 1√
2π

∫
|η|>k

ϕ̂±(η)eiη(x cos θ∓y sin θ)−√
η2−k2 (±x sin θ+y cos θ) dη if y > ∓x tan θ,

where ϕ̂± both satisfy (3) with ε = 
 cos θ . Taking y = 0 yields u(· , 0)|R± . Note that Corollary 2.1 tells us that u(· , 0)|R± ∈
L1(R±). This justifies equation (7), which becomes

ϕ̂(ξ) = 1

2π

∑
±

∫
R±

∫
|η|>k

ϕ̂±(η)ex(iη cos θ∓√
η2−k2 sin θ) dη e−ixξ dx.

Using the same argument as in the proof of Corollary 2.1, it is readily seen that the integrands of the above integrals belong 
respectively to L1(R± × {|η| > k}). Hence, Fubini’s theorem yields

ϕ̂(ξ) = 1

2π

∑
±

∫
|η|>k

ϕ̂±(η)

∫
R±

ex(i(η cos θ−ξ)∓√
η2−k2 sin θ) dx dη =

∫
|η|>k

F (η, ξ)dη,

where

F (η, ξ) := 1

2π

∑
±

ϕ̂±(η)

∓i(η cos θ − ξ) + √
η2 − k2 sin θ

.

For almost every η, this function extends to an analytic function of ξ in any complex domain in which both denominators 
do not vanish. The complex values of ξ for which there exists a η ∈R \ (−k, +k) such that one of the denominators vanishes 
is the hyperbola defined by the equation

(Re ξ)2

2
− (Im ξ)2

2
= k2
cos θ sin θ
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Fig. 2. Domains of analyticity of ϕ̂ .

represented in Fig. 2. Hence, for almost every η, F (η, ξ) is an analytic function of ξ in the three connected components of 
the complex plane delimited by this hyperbola. By the Lebesgue’s dominated convergence theorem (recall that ϕ̂± ∈ L1(R), 
see Remark 2), we deduce that the same holds true for ϕ̂(ξ). In fact, we are interested in the analyticity of ϕ̂(ξ) in the 
components colored in gray in Fig. 2. Indeed, as we already know that ϕ̂ vanishes on (−k, +k) (see (6)), the analyticity in 
these gray components implies that ϕ̂(ξ) also vanishes for ξ ∈R \ (−k, +k), which is the desired result.

4. Higher dimensions and other extensions

The above proof of Theorem 1.1 is specific to the two-dimensional case, since it cannot be extended directly to higher 
dimensions (more precisely, Proposition 2.1 can readily be extended, but not the arguments of section 3). Fortunately, the 
case d > 1 is easily derived from the case d = 1 as follows. Suppose that u ∈ L2(�) satisfies the Helmholtz equation (1)
in �. We split the coordinate x ∈ R

d as x = (x1, x′) where x′ := (x2, . . . , xd) ∈ R
d−1 so that the Fourier transform F in 

the x variable appears as the product of the partial Fourier transforms in the x1 and x′ variables, denoted by F1 and F ′
respectively. Define u′(x1, ξ ′, y) := F ′{u(x1, · , y)}(ξ ′) and û(ξ, y) := F{u(· , y)}(ξ) where ξ ′ ∈ R

d−1 and ξ = (ξ1, ξ ′) ∈ R
d

are the Fourier variables associated respectively with x′ and x. By the Parseval’s identity, for a.e. ξ ′ ∈ R
d−1, u′(· , ξ ′, ·) is 

square-integrable in the cone �2D := {(x1, y) ∈R
2; y > −|x1| tan θ} and satisfies(

∂2

∂x2
1

+ ∂2

∂ y2
+ k2 − |ξ ′|2

)
u′(· , ξ ′, ·) = 0 in �2D.

Hence Theorem 1.1 for d = 1 applies provided |ξ ′| < k: in this case, we thus know that u′(· , ξ ′, ·) vanishes in �2D. As 
û(ξ1, ξ ′, y) = F1{u′(· , ξ ′, y)}(ξ1), this shows that for all y ≥ 0, û(· , y) vanishes in the cylinder {(ξ1, ξ ′) ∈ R

d; |ξ ′| < k}. This 
conclusion actually remains true for any axisymmetric cylinder of radius k whose axis contains the origin, since in the above 
lines, one can replace the particular direction x1 by any direction of the x-space using a rotation. Therefore û(ξ, y) = 0 for 
all ξ ∈ R

d and y ≥ 0. Applying F−1 yields u = 0 in Rd ×R
+ and we conclude again by the unique continuation principle.

Theorem 1.1 also applies in an anisotropic medium described by the equation

div(Agrad u) + k2 u = 0 in �,

where A is a constant real symmetric positive definite d × d matrix. Indeed this equation can be transformed into our orig-
inal Helmholtz equation using first the new coordinate system corresponding to a unitary matrix that diagonalizes A, then 
a suitable dilation in each direction. This process transforms � into a new conical domain that is no longer axisymmetric 
in general, but that still contains an axisymmetric cone with vertex angle greater than π , which allows us to conclude.

Another application concerns the time-harmonic Maxwell’s equations

curl curl U − k2 U = 0 in � ⊂R
3.

In this case, we simply have to notice that, thanks to the relation � = −curl curl + grad div, if U ∈ L2(�)3 satisfies this 
equation, then each of its components Ui belongs to L2(�) and satisfies the Helmholtz equation (1).

Theorem 1.1 can also be extended to some situations which involve non-homogeneous media, using a generalized Fourier 
transform instead of the usual one, as shown in [1,2,5]. Works on this subject are in progress.
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