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RESUME

On calcule dans cet article la KK-théorie de systémes semi-circulaires A-valués a Il'aide
d’outils développés par Pimsner (voir [1]) pour étudier les algébres de Toeplitz généralisées.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

To begin with, we will need a result in Hilbert module theory.

Proposition 0.1. Let A, C be C*-algebras, B a sub-C*-algebra of C, E a Hilbert module over A, and ¢ : A — B a *-morphism. Let
j: B— C be theinclusion, ¥ d:efj o¢ and Eg def {Z X; ® bi, x; € E, bj € B} C EQ®y C. Then Eq is naturally endowed with a structure
of Hilbert module over B and Eq = E ®¢ B.

Indeed, let x;, x;, € E, b;, b, € B. We have:
< in ® bj, Zx;( Qb >= Zb}*¢(< X, X, >)bj € B.
ik

As B is closed in C, we have: Vx,y € Eg, <X,y > € B. As a result, Eg is naturally endowed with a structure of pre-Hilbert
module over B, which is complete because Eg is a closed subspace of the Hilbert module E ®y C.

For the second part of the proposition, let 7 : (x,b) €e Ex B> x®b € Eg. If ac E, then n(x-a,b) =x-a®b=x® jo
¢(@b=x®¢(@b=m(x,a-b). Then 7 induces 7 : E ®qg B — Eqo. We clearly have:

< ﬁ(Zx,- ®b,~),ﬁ(2xi ® b)) >=< ZX,’ ® bi, in ® bj >,
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so 7 is an isometry. As Eq is complete, 7 extends to an isometry 7 on E ®, B. As 7 is an isometry, Im(7) is closed in Eg,
but Im(7) contains a dense subspace of Eq, so 7 is an isomorphism and Eq = E ®4 B.

Let’s turn now to our main result. Let A be a C*-algebra with unit, and E be a Hilbert module over A with an isometric
*-morphism ¢ : A — L4 (E) which endowed E with a left action. The algebra A is supposed to be separable and E countably
generated. We will denote by F(E) the Fock space associated to E, which is F(E) = @ E®" (where E®9 = A). Each E®" is

n>0
a left A-module, thus F(E) is endowed with a diagonal left action over A.

Let £ € E and T be the left creation operator n+— £ ® . Then T¢ € La(F(E)) and the annihilation operator is given by
Tim®...0M)=<&m>mQ...01Mn.

We denote by 7 the associated Toeplitz algebra, which is the C*-algebra generated by A and the operators T.

If E is also endowed with an anti-linear involution & — £* then there is a natural *-subalgebra of 7, that we denote by
Sk, and is generated by A and elements Tg + Tg‘*. This algebra is mainly studied in a Von Neumann algebra context (see
for example [2] and [3]). We will here compute its KK-theory as a particular case of the following theorem.

Theorem 0.2. Let S be any sub-C*-algebra of Tg which contains A and is generated by linear combinations of creation and annihilation
operators. Then S is KK-equivalent to A

According to Pimsner (see Proposition 3.3 in [1]), Toeplitz algebras satisfy the following universal property:

Proposition 0.3. Let B be a C*-algebra and o : A — B a *-morphism. We suppose that there is a family (t¢)z ek in B such that:

1) & — tg is C-linear
2) teo(a) =tgq and o (@)t = tp(a)e
3) t;t; =0(<&,0>)

Then o extends to a unique morphism on Tg such that o (Tg) = t¢.

We denote by is the inclusion of A in S, is the inclusion of S in 7¢ and jd=efis oia. Let P be the projection in F(E)
onto E®¥% = A and Q dzefl — P. Let mp: A— La(F(E)) given by the diagonal left action of F(E), and 74 d=Eerro =m9Q. We

also define Tg;- def QT:Q. Then (71, Tg) satisfies conditions in Proposition 0.3, so 771 extends to a representation 71 of 7.

Let B d:ef(]-'(E) @ F(E), (;rg, 1), F) where F : F(E) ® F(E) — F(E) ® F(E) is defined by F(§ ®¢) =¢ ®&. Then B is an

element of KK (7g, A) (see Lemma 4.2 and Definition 4.3 in [1]).
We have the relations j®7; B =14 and B ®4 j =17;, where 1c, for every C*-algebra C, is the multiplicative unit in the

ring KK(C, C) (see Theorem 4.4 in [1]). We consider « d=Efi5 ®7: B € KK(S, A).
Proposition 0.4. We have the relations is Qs =14 and ¢ Q@4 is = 15.

Indeed, for the first one we have iy Qs @ =is ®sis @7; B=jQ71; B=1a.
For the second one, we first recall all the tools which are introduced in Pimsner’s article in the proof of Theorem 4.4.

Let 71 : Tg — L7 (F(E) ®; Tg) be the operator such that, for T € Tg, 71(T) acts on A®; Tg « Tg by 71(T)(S) Cl:EfTS and
is equal to zero on @E®” ®; Te (note that 7y is a *-morphism). Let 7o : 7 — L7;(F(E) ®; Tg) be the operator such
n>1

that, for Tz € Tg, T0(T¢) acts on A ®; T« Tg by 71(T£)(S) d:“Jff ® S and is equal to zero on @E@’” ®j Te. Note that

n>1

(to(Te)* (N ® S)=<&,n> S on E®; 7¢ and is equal to zero on A ®; 7¢ and @EW ®;j Te.
n>2
Lemma 0.5. Consider Tz € T and t € [0, 1]. We define

= def b/ . T
Ter = cos(50T0(Te) +sin( 071 (Te) +71(Te) © 17;.

The couple (7o ® 17, Tgﬂt) satisfies the conditions in Proposition 0.3, and thus mg ® 17; extends to a representation 7ty : Tg —
L7 (F(E) ®; Tk).

Conditions 1) and 2) are easy to check.
As regards condition 3), we have: T;‘IT;J =1+ J + K where
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1= o2 (G0 (t0(Te)) To(Te) +sin(20) cos(2-0)(ro(Te)) 71 (T;)

+ cos(Z (T (Te) T (Te) @ 17z,

J = cos(Z0sin(Z0(T1 (Te) t0(Te) + sin* (3.0 (Te)) 1 (Te)
+sinCO(@ T T (T) @ 17,

K= COS(%f)((TH (Te)* @ 17)70(Te) + Siﬂ(%f)((ﬂl (Te)* @ 17)T1(Ty)
+ (@1 (Te)* m(Ty)) @ 173).

Then we compute each term on the subspace where it doesn’t vanish. Remark that the subspaces E®*" ®; T¢ of F(E) ®; Tk
are stable for 71 ® 17;. Let T € A®;j Tg » Tk, n € E. We have:

(to(Te))*T0(TH(T) = (o(Te))* ¢ @ T) =< &,0 > T;
(to(Te))*T1 (T )(T) =0;

(To(T))* (m(T) @ 1) (M@ T) = (1o(Te)*(QT; QAnQT) =0;
(t1(Te))*10(T)(T) =0;

(T T(T)(M) =T;T, T=<§&¢>T;

(T1(Te))* (m(T) ® 173) =0;

((1(Te)* @ 1) To(T)(T) = (M (THEH ® T =0;

(((Te)* @ 1)1 (T )(T) = (M (THD @ T T =0.

For the last two statements, we use the fact that mq (Tg‘) vanishes on the subspaces A = E®? and E = E®! of F(E). As
regards the last term, let n € F(E). We have: (7‘[1(T§)T[1 (T;))n ®T=<&,n>(Qn)®T. Finally:

T2, fen@T) = (cos%%t) + sin%%t)) <E>(PPOT+<E7>QNET
=<&¢>nQT

0 T Tee=(mo@17)(<&,¢ >).
We now focus on o ®4 is. Likewise, we can define 7:15 :S— Ls(F(E)®i, S) and 7:05 15— Ls(F(E) ®iy S).
The element o ®4 i is given by the Kasparov module

(F(E)®i, S®F(E)Qi, S, (Mo ® 15 0is) ® (M1 ® 15 0is), F® 15).

Then the element o ®4 ia — 15 can be represented by the Kasparov module y d=ef((]-'(E) ®i, S) ® (F(E) ®i, S),JTOS (&) 7115,
F ® 15) where 7Tls =‘L'15 @ (m1 ® 15 0is) and T[OS =my®lsois.

We also have 1o ® 10is =75 @ (71 ® 1 0is).

Lemma 0.6. Consider the C-subspace F(E) Qi S of F(E) ®; T (see Proposition 0.1) and let t € [0, 1]. Then the representation ;
in Lemma 0.5 induces a representation nts 1S — Ls(F(E) ®i, S).

n m
Indeed, let g dzefZAiTgi + Z/L,‘TZ_ be a generator of the C*-algebra S. We first show that 7r;(g) stabilizes F(E) ®;, S.
i=1 i=1

Let Eo & (> & ® bi. xi € F(E), b € S} € F(E) ®i, S.

We have 7:(g) =L+ M + N where

L= mn(Te) + Y pi(t1(Tg)*

i=1 i=1

M= xito(Ts) + Y pi(to(Ty,)*

i=1 i=1

N=> 2@mo(Te) ® 17 + Y 1i(mo(Te)) ® 173
i=1 i=1

As in the proof of Lemma 0.5 we only pay attention on the subspaces where terms do not vanish. Let be A®;, S= S,
n € E. Then we have:
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QO Mt (Te) + Y mim(Te)b = AiTg + Y wiTihe A®i, S=;

i=1 i=1 i=1 i=1

O xito(Te) + Y ii(to(Te) b= QM) ®b € E®S;

i=1 i=1 i=1

n m m
Q_Mito(Te) + D pi(ro(Te) M @b=< ) piti.n>beA®;, S=.
i=1 i=1 i=1
The last term clearly stabilizes Eg. By linearity, m:(g) stabilizes Eg. As m:(g) is continuous on Ey and (7:(g))* = m:(g*), m¢

induces a *-morphism 7rt5 on the involutive algebra generated by g valued in Ls(F(E) ®;, S). We now have to extend ths

to a morphism on S. We note that ||71[5(g)|| < |l (@)l < |lgll because ¢ is a *-morphism between C*-algebras. Then nts is

continuous and extends to a (unique) morphism on S, still denoted by nts. For t =0 or t =1, we find the same ng and nls
introduced before.

To end the proof, we will show that the family nts is a homotopy, and thus y = 0. First we have to show that, for fixed

beS, t— nts is continuous. For that, as ||71tS )|l < lIs]l, we only have to see it on generators g € S, which is obvious.

Besides, we need to show that, for b € S and t € [0, 1] fixed, we have:

i (b) — 75 (b) € Ks(F(E) ®iy S).

n m
We only need to check it for g € S generator with g d:efZAiT;i + Z/LiT;. The projection P, introduced at the beginning,
i=1 i=1
is clearly a compact operator of F(E), so P ® 1s is a compact operator of F(E) ®;, S. We can see that rr[s & — nos(g) =
U+V eKs(F(E)Q®i, S) where

U= xi(r(Tg) — 15 (Te)(P & 1)
i=1

m
V=" wi(P @15 (T}) — 715 (TE).
i=1
Thus we have the relation o ®4i4 = 1s.

Corollary 0.7. We have Ko(S) = Ko(A). Particularly, we have:
Ko(Sg) = Ko(A)

And thus a different proof of the result of [4]:

1
Corollary 0.8. Let ¢ : f € C([0,1]) —~ / f(t) dt. ¢ is a state of the C*-algebra C([0, 1]).

0
We have Ko ((C([0, 11), ¢)*r(C([0, 11), ) = Ko (C).

Indeed, for A=C and E = C?, if S; and S, are the creation operators associated with the vectors (1,0) and (0, 1),
we consider C*(1, St + S7, Sz + S3). It is well known that C*(1, S1 + S7, S2 4 S3) = (C([—2, 2]), ¥)*:(C([-2, 2]), ¥), where
2

1
v felC(-2,2]) 3 / f(t)v/4 —t2dt (see [5]), and that there is an homeomorphism on [—2, 2] onto [0, 1] that sends
-2

the semi-circular measure to the Lebesgue one. That gives rise to an *-isomorphism:
(€0, 11), @)*r(C([0, 11, ) = (C([—2, 2]), ¥)*+(C([—2, 2], ¥)
so Ko((C([0, 11, ¢)*(C([0, 11), ) = Ko(C*(1, S1 + ST, S2 + 53)) = Ko (C).
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