
C. R. Acad. Sci. Paris, Ser. I 354 (2016) 51–55
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

Applications of Bourgain–Brézis inequalities to fluid 

mechanics and magnetism ✩

Applications des inégalités de Bourgain–Brézis à la mécanique des fluides et 

au magnétisme

Sagun Chanillo a, Jean Van Schaftingen b, Po-Lam Yung c

a Department of Mathematics, State University of New Jersey, Rutgers, NJ 08854, USA
b Institut de recherche en mathématique et en physique, Université catholique de Louvain, chemin du Cyclotron 2 bte L7.01.01, 
1348 Louvain-la-Neuve, Belgium
c Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 September 2015
Accepted after revision 8 October 2015
Available online 6 November 2015

Presented by Haïm Brézis

As a consequence of inequalities due to Bourgain–Brézis, we obtain local-in-time well-
posedness for the two-dimensional Navier–Stokes equation with velocity bounded in 
spacetime and initial vorticity in bounded variation. We also obtain spacetime estimates 
for the magnetic field vector through improved Strichartz inequalities.
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r é s u m é

À partir d’inégalités de Bourgain–Brézis, nous démontrons le caractère bien posé localement 
dans le temps des équations de Navier–Stokes avec vitesse bornée en espace-temps et un 
tourbillon initial à variation bornée. Nous obtenons également des estimations en espace-
temps pour le champ magnétique grâce à des inégalités de Strichartz améliorées.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Incompressible Navier–Stokes flow

Let v(x, t) ∈R
2 be the velocity and p(x, t) be the pressure of a fluid of viscosity ν > 0 at position x ∈ R

2 and time t ∈R, 
governed by the incompressible two-dimensional Navier–Stokes equation:

{
vt + (v · ∇)v = ν�v − ∇p,

∇ · v = 0,
(1)
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When the viscosity coefficient ν degenerates to zero, (1) becomes the Euler equation. In two spatial dimensions, the vorticity 
of the flow is a scalar, defined by

ω = ∂x1 v2 − ∂x2 v1

where we wrote v = (v1, v2). In the sequel, when we consider the Navier–Stokes equation, without loss of generality we 
set the viscosity coefficient ν = 1.

The vorticity associated with the incompressible Navier–Stokes flow in two dimensions propagates according to the 
equation

ωt − �ω = −∇ · (vω). (2)

This follows from (1) by taking the curl of both sides. We express the velocity v in the Navier–Stokes equation in terms of 
the vorticity through the Biot–Savart relation:

v = (−�)−1(∂x2ω,−∂x1ω). (3)

This follows formally by differentiating ω = ∂x1 v2 − ∂x2 v1, and using that ∇ · v = 0.
Our theorem states:

Theorem 1. Consider the two-dimensional vorticity equation (2) and an initial vorticity ω0 ∈ W 1,1(R2) at time t = 0. If

‖ω0‖W 1,1(R2) ≤ A0,

then there exists a unique solution to the vorticity equation (2) for all time t ≤ t0 = C/A2
0 , such that

sup
t≤t0

‖ω(·, t)‖W 1,1(R2) ≤ cA0.

Moreover, the solution ω depends continuously on the initial data ω0, in the sense that if ω(i)
0 is a sequence of initial data converging 

in W 1,1(R2) to ω0 , then the corresponding solutions ω(i) to the vorticity equation (2) satisfy

sup
t≤t0

‖ω(i)(·, t) − ω(·, t)‖W 1,1(R2) → 0

as i → ∞.
Finally, the velocity vector v defined by the Biot–Savart relation (3) solves the 2-dimensional incompressible Navier–Stokes equa-

tion (1), and satisfies

sup
t≤t0

‖v(·, t)‖L∞(R2) + sup
t≤t0

‖∇v(·, t)‖L2(R2) ≤ cA0.

Via the Gagliardo–Nirenberg inequality, we can conclude from our theorem that

sup
0≤t≤t0

‖ω(·, t)‖L p(R2) ≤ C, 1 ≤ p ≤ 2.

In particular, this is enough to apply Theorem II of Kato [8] to express the velocity vector in the Navier–Stokes equation (1)
in terms of the vorticity via the Biot–Savart relation displayed above.

In [7,8], it was proved that under the hypothesis that the initial vorticity is a measure, there is a global solution that 
is well-posed to the vorticity and Navier–Stokes equation; see also an alternative approach in Ben-Artzi [1], and a stronger 
uniqueness result in Brézis [4]. The velocity constructed then satisfies the estimate [8, (0.5)]:

‖v(·, t)‖L∞(R2) ≤ Ct−
1
2 , t → 0. (4)

In contrast, in Theorem 1 we have v ∈ L∞
t L∞

x , x ∈ R
2, though we are assuming that the initial vorticity has bounded 

variation, that is, its gradient is a measure.
The estimate (4) is indeed sharp as can be seen by the famous example of the Lamb–Oseen vortex [9], which consists 

of an initial vorticity ω0 = α0δ0, a Dirac mass at the origin of R2 with strength α0. The constant α0 is called the total 
circulation of the vortex. A unique solution to the vorticity equation (2) can be obtained by setting

ω(x, t) = α0

4πt
e− |x|2

4t , v(x, t) = α0

2π

(−x2, x1)

|x|2
(

1 − e− |x|2
4t

)
.

It can be seen from the identities above that

‖ω(·, t)‖W 1,1(R2) ∼ ‖v(·, t)‖L∞(R2) ∼ c t− 1
2 , t → 0.
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Hence the assumption that the initial vorticity is a measure cannot yield an estimate like in Theorem 1. Thus to get uniform-
in-time, L∞ space bounds all the way to t = 0, we need a stronger hypothesis and one such is vorticity in BV (bounded 
variation).

It is also helpful to further compare our result with that of Kato [8], who establishes in (0.4) of his paper that given that 
the initial vorticity is a measure, one has for the vorticity at further time

‖∇ω(·, t)‖Lq(R2) ≤ ct
1
q − 3

2 , 1 < q ≤ ∞.

In contrast, we obtain uniform-in-time bounds for q = 1, as opposed to singular bounds for q > 1 when t → 0.
It is an open question whether there is a global version of Theorem 1 of our paper.
In order to prove Theorem 1, we rely on a basic proposition that follows from the work of Bourgain and Brézis [2,3]. 

A part of this proposition also holds in three dimensions. Recall that if v(x, t) ∈ R
3 is the velocity of a fluid at a point x ∈R

3

at time t , then the vorticity of v is defined by

ω = ∇ × v.

Under the assumption that the flow is incompressible, the Biot–Savart relation reads

v = (−�)−1(∇ × ω). (5)

Proposition 2.

(a) Consider the velocity v in three spatial dimensions. Assume that v satisfies the Biot–Savart relation (5). Then at any fixed time t,

‖v(·, t)‖L3(R3) + ‖∇v(·, t)‖L3/2(R3) ≤ C‖∇ × ω(·, t)‖L1(R3)

where C is a constant independent of t, v, and ω.
(b) Consider the velocity v in two spatial dimensions. Assume that v satisfies the Biot–Savart relation (3). Then at any fixed time t,

‖v(·, t)‖L∞(R2) + ‖∇v(·, t)‖L2(R2) ≤ C‖∇ω(·, t)‖L1(R2).

where C is a constant independent of t, v and ω.

We remark that in two dimensions, by the Poincaré inequality, it follows from ‖∇v‖L2(R2) < ∞, that v lies in VMO(R2), 
i.e. has vanishing mean oscillation.

Proof of Proposition 2. Note that

∇ · (∇ × ω) = 0.

Thus we can immediately apply the result of Bourgain–Brézis [3] (see also [2,5,10]) to the Biot–Savart formula (5) and get 
the desired conclusions in part (a).

To consider the 2-dimensional flow, note that (−∂x2ω, ∂x1ω) is a vector field in R2 with vanishing divergence. In view 
of the two-dimensional Biot–Savart relation (3), we can then use the two-dimensional Bourgain–Brézis result [3], and we 
obtain (b). �

We note further that the proposition applies to both the Euler (inviscid) or the Navier–Stokes (viscous) flow.

Proof of Theorem 1. Now set Kt for the heat kernel in two dimensions, i.e.

Kt(x) = 1

4πt
e− |x|2

4t .

Rewriting (2) as an integral equation for ω using Duhamel’s theorem, where ω0 is the initial vorticity, we have

ω(x, t) = Kt 	 ω0(x) +
t∫

0

∂x Kt−s 	 [vω(x, s)]ds (6)

where v is given by (3).
We apply a Banach fixed point argument to the operator T given by

Tω(x, t) = Kt 	 ω0(x) +
t∫
∂x Kt−s 	 [vω(x, s)]ds, (7)
0
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where again v is given by (3). Let us set

E =
{

g | sup
0<t<t0

‖g(·, t)‖W 1,1(R2) ≤ A
}
.

We will first show that T maps E into itself, for t0 chosen as in the theorem.
Differentiating (7) in the space variable once, we get

(Tω(x, t))x = Kt 	 f0(x) +
t∫

0

∂x Kt−s 	
(
vxω

)
ds +

t∫
0

∂x Kt−s 	
(
vωx

)
ds.

Here we denote by f0 the spatial derivative of the initial vorticity ω0. Using Young’s convolution inequality, we have

‖(Tω(·, t))x‖L1(R2) ≤ ‖ f0‖L1(R2) + C

t∫
0

(t − s)−1/2(‖vxω‖L1(R2) + ‖vωx‖L1(R2))ds.

Now we apply Proposition 2(b) to each of the terms on the right. For the first term, we have, by Cauchy–Schwartz,

‖vxω‖L1(R2) ≤ C‖∇v‖L2(R2)‖ω‖L2(R2).

The Gagliardo–Nirenberg inequality applies as ω ∈ E and so ω(·, t) ∈ L1(R2) and so,

‖ω‖L2(R2) ≤ C‖∇ω‖L1(R2),

and to ‖∇v‖L2(R2) we apply Proposition 2(b). Similarly, for the second term,

‖vωx‖L1(R2) ≤ ‖v‖L∞(R2)‖ωx‖L1(R2).

Again we apply Proposition 2(b) to ‖v‖L∞(R2) . Hence in all we have,

‖(Tω)x‖L1(R2) ≤ ‖ f0‖L1(R2) + C

t∫
0

(t − s)−1/2‖∇ω‖2
L1(R2)

ds.

Thus setting ‖ f0‖L1(R2) = ‖ω0‖Ẇ 1,1(R2) ≤ A0, we get for t ≤ t0 and since ω ∈ E ,

‖∇(Tω)(·, t)‖L1(R2) ≤ A0 + Ct1/2
0 A2.

Next from Young’s convolution inequality it follows from (7) that

‖Tω(·, t)‖L1(R2) ≤ A0 +
t∫

0

(t − s)−1/2‖vω(·, s)‖1 ds.

But by Proposition 2(b) again,

‖vω‖1 ≤ ‖v‖∞‖ω‖1 ≤ cA2.

Thus

‖Tω(·, t)‖1 ≤ A0 + c t1/2 A2.

So, adding the estimates for Tω and ∇(Tω), we have:

sup
t≤t0

‖Tω(·, t)‖W 1,1(R2) ≤ 2A0 + ct1/2
0 A2.

By choosing A so that A0 = A/8 and t < t0 = C/A2
0, we can assure that if ω ∈ E , then

sup
t≤t0

‖(Tω)(·, t)‖W 1,1(R2) ≤ A

2
.

Thus Tω ∈ E , if ω ∈ E . If we establish that T is a contraction, then we are done.
Next we observe that the estimates in Proposition 2(b) are linear estimates. That is

‖v1 − v2‖∞ + ‖∇v1 − ∇v2‖2 ≤ C‖ω1 − ω2‖W 1,1(R2).

We easily can see from the computations above, that we have
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sup
t≤t0

‖Tω1 − Tω2‖W 1,1(R2) ≤ CAt1/2
0 sup

t≤t0

‖ω1 − ω2‖W 1,1(R2).

By the choice of t0, it is seen that T is a contraction. Thus using the Banach fixed-point theorem on E , we obtain our 
operator T has a fixed point and so the integral equation (6) has a solution in E . The remaining part of our theorem follows 
easily from Proposition 2(b). �

We note in passing an estimate in R3 from Proposition 2(a) above for the Navier–Stokes or the Euler flow:

sup
t>0

‖v‖L3(R3) + sup
t>0

‖∇v‖L3/2(R3) ≤ C sup
t>0

‖∇ × ω‖L1(R3). (8)

2. Magnetism

We next turn to our results on magnetism. We denote by B(x, t) and E(x, t) the magnetic and electric field vectors at 
(x, t) ∈R

3 ×R. Let j(x, t) denote the current density vector. The Maxwell equations imply

∇ · B = 0, (9)

∂tB + ∇ × E = 0, (10)

∂tE − ∇ × B = −j. (11)

Differentiating (10) in t and using (11), together with the vector identity ∇ × (∇ × B) = ∇(∇ · B) − �B and (9), one obtains 
an inhomogeneous wave equation for B:

BttT − �B = ∇ × j. (12)

The right side of (12) satisfies the vanishing divergence condition

∇ · (∇ × j) = 0

for any fixed time t . Thus an improved Strichartz estimate, namely Theorem 1 in [6], applies. We point out that the 
Bourgain–Brézis inequalities play a key role in the proof of Theorem 1 in [6]. We conclude easily:

Theorem 3. Let B satisfy (12) and let B(x, 0) = B0 , ∂t B(x, 0) = B1 denote the initial data at time t = 0. Let s, k ∈R. Assume 2 ≤ q ≤ ∞, 
2 < q̃ ≤ ∞ and 2 ≤ r < ∞. Let (q, r) satisfy the wave compatibility condition

1

q
+ 1

r
≤ 1

2
,

and assume the following scale invariance condition is verified:

1

q
+ 3

r
= 3

2
− s = 1

q̃′ + 1 − k.

Then, for 1
q̃ + 1

q̃′ = 1, we have

‖B‖Lq
t Lr

x
+ ‖B‖C0

t Ḣ s
x
+ ‖∂tB‖C0

t Ḣ s−1
x

≤ C(‖B0‖Ḣ s + ‖B1‖Ḣ s−1 + ‖(−�)k/2(∇xj)‖
Lq̃′

t L1
x
).

The main point in the theorem above is that we have L1 norm in space on the right side.

References

[1] M. Ben-Artzi, Global solutions of two-dimensional Navier–Stokes and Euler equations, Arch. Ration. Mech. Anal. 128 (4) (1994) 329–358.
[2] J. Bourgain, H. Brézis, New estimates for the Laplacian, the div–curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I 338 (7) (2004) 539–543.
[3] J. Bourgain, H. Brézis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. 9 (2) (2007) 277–315.
[4] H. Brézis, Remarks on the preceding paper by M. Ben-Artzi: “Global solutions of two-dimensional Navier–Stokes and Euler equations”, Arch. Ration. 

Mech. Anal. 128 (4) (1994) 359–360.
[5] S. Chanillo, J. Van Schaftingen, P.-L. Yung, Variations on a proof of a borderline Bourgain–Brézis Sobolev embedding theorem, to appear in Chin. Ann. 

Math. Ser. B.
[6] S. Chanillo, P.-L. Yung, An improved Strichartz estimate for systems with divergence free data, Commun. Partial Differ. Equ. 37 (2) (2012) 225–233.
[7] Y. Giga, T. Miyakawa, H. Osada, Two-dimensional Navier–Stokes flow with measures as initial vorticity, Arch. Ration. Mech. Anal. 104 (3) (1988) 

223–250.
[8] T. Kato, The Navier–Stokes equation for an incompressible fluid in R2 with a measure as the initial vorticity, Differ. Integral Equ. 7 (3–4) (1994) 

949–966.
[9] C.W. Oseen, Über Wirbelbewegung in einer reibenden Flüssigheit, Ark. Mat. Astron. Fys. 7 (1912) 1–13.

[10] J. Van Schaftingen, Estimates for L1-vector fields, C. R. Acad. Sci. Paris, Ser. I 339 (3) (2004) 181–186.

http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4D5231333038383537s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib426F75726761696E4272657A697332303034s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib426F75726761696E4272657A697332303037s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4D5231333038383538s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4D5231333038383538s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4368616E696C6C6F59756E6732303132s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib476967614D6979616B6177614F7361646131393838s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib476967614D6979616B6177614F7361646131393838s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4B61746F31393934s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4B61746F31393934s1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib4F7365656Es1
http://refhub.elsevier.com/S1631-073X(15)00273-3/bib56616E536368616674696E67656E32303034s1

	Applications of Bourgain-Brézis inequalities to ﬂuid mechanics and magnetism
	1 Incompressible Navier-Stokes ﬂow
	2 Magnetism
	References


