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RESUME

A partir d’inégalités de Bourgain-Brézis, nous démontrons le caractére bien posé localement
dans le temps des équations de Navier-Stokes avec vitesse bornée en espace-temps et un
tourbillon initial a variation bornée. Nous obtenons également des estimations en espace-
temps pour le champ magnétique grace a des inégalités de Strichartz améliorées.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Incompressible Navier-Stokes flow

Let v(x, t) € R? be the velocity and p(x,t) be the pressure of a fluid of viscosity v > 0 at position x € R? and time t € R,
governed by the incompressible two-dimensional Navier-Stokes equation:

(1)

Vi + (V- V)Vv=VAv— Vp,
V.v=0,

* S.C. was partially supported by NSF grant DMS 1201474. J.V.S. was partially supported by the Fonds de la recherche scientifique, FNRS grant ].044.13.
P-LY. was partially supported by a direct grant for research from the Chinese University of Hong Kong (4053120). We thank Haim Brézis for several
comments that improved the paper.

E-mail addresses: chanillo@math.rutgers.edu (S. Chanillo), Jean.VanSchaftingen@uclouvain.be (J. Van Schaftingen), plyung@math.cuhk.edu.hk (P.-L. Yung).

http://dx.doi.org/10.1016/j.crma.2015.10.005
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.


http://dx.doi.org/10.1016/j.crma.2015.10.005
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:chanillo@math.rutgers.edu
mailto:Jean.VanSchaftingen@uclouvain.be
mailto:plyung@math.cuhk.edu.hk
http://dx.doi.org/10.1016/j.crma.2015.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2015.10.005&domain=pdf

52 S. Chanillo et al. / C. R. Acad. Sci. Paris, Ser. 1 354 (2016) 51-55
When the viscosity coefficient v degenerates to zero, (1) becomes the Euler equation. In two spatial dimensions, the vorticity
of the flow is a scalar, defined by

w = axl V) — 8X2V1

where we wrote v = (v1, v2). In the sequel, when we consider the Navier-Stokes equation, without loss of generality we
set the viscosity coefficient v =1.
The vorticity associated with the incompressible Navier-Stokes flow in two dimensions propagates according to the
equation
wr — Aw = -V - (Vo). (2)

This follows from (1) by taking the curl of both sides. We express the velocity v in the Navier-Stokes equation in terms of
the vorticity through the Biot-Savart relation:

V=(=2)"1 (3, —dx ). (3)
This follows formally by differentiating @ = 9, V2 — dx, V1, and using that V -v=0.
Our theorem states:
Theorem 1. Consider the two-dimensional vorticity equation (2) and an initial vorticity wy € W11 (R?) at time t = 0. If
||CU0||WH(R2) < Ao,
then there exists a unique solution to the vorticity equation (2) for all time t < to = C/A2, such that

sup |lw(:, t)”WlJ(RZ) < cAop.
t<tp

Moreover, the solution w depends continuously on the initial data wy, in the sense that ifa)g)

in WL1(R2) to wo, then the corresponding solutions w® to the vorticity equation (2) satisfy

is a sequence of initial data converging

sup @ (-, 1) = (. 1) |11 g2y —> O
t<tp
asi— oo.
Finally, the velocity vector v defined by the Biot-Savart relation (3) solves the 2-dimensional incompressible Navier-Stokes equa-
tion (1), and satisfies

sup [[V(-, O) [l poe r2) + Sup [VV(, Ol 122y < cAo.
t<to t<tg

Via the Gagliardo-Nirenberg inequality, we can conclude from our theorem that

sup |lw(, t)”Lp(RZ <C, 1<p=2
0<t<tp

In particular, this is enough to apply Theorem II of Kato [8] to express the velocity vector in the Navier-Stokes equation (1)
in terms of the vorticity via the Biot-Savart relation displayed above.

In [7,8], it was proved that under the hypothesis that the initial vorticity is a measure, there is a global solution that
is well-posed to the vorticity and Navier-Stokes equation; see also an alternative approach in Ben-Artzi [1], and a stronger
uniqueness result in Brézis [4]. The velocity constructed then satisfies the estimate [8, (0.5)]:

IV, Dl < €2, £ 0. )

In contrast, in Theorem 1 we have v € L°L°, x € R?, though we are assuming that the initial vorticity has bounded
variation, that is, its gradient is a measure.

The estimate (4) is indeed sharp as can be seen by the famous example of the Lamb-Oseen vortex [9], which consists
of an initial vorticity wg = g8y, a Dirac mass at the origin of R? with strength og. The constant «g is called the total
circulation of the vortex. A unique solution to the vorticity equation (2) can be obtained by setting

o X2 g (—x2,X X%
w(x,t):—oe_T, v(x,t):—ow(l—e__).
4t 2w |x|?

It can be seen from the identities above that

_1
loC, Ollwii gy ~ IVE, Ol ooy ~ct™2, t — 0.
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Hence the assumption that the initial vorticity is a measure cannot yield an estimate like in Theorem 1. Thus to get uniform-
in-time, L° space bounds all the way to t = 0, we need a stronger hypothesis and one such is vorticity in BV (bounded
variation).

It is also helpful to further compare our result with that of Kato [8], who establishes in (0.4) of his paper that given that
the initial vorticity is a measure, one has for the vorticity at further time

-3
2
,

1
IV, )l a2 < ct? 1<g=<oo.

In contrast, we obtain uniform-in-time bounds for ¢ =1, as opposed to singular bounds for ¢ > 1 when t — 0.

It is an open question whether there is a global version of Theorem 1 of our paper.

In order to prove Theorem 1, we rely on a basic proposition that follows from the work of Bourgain and Brézis [2,3].
A part of this proposition also holds in three dimensions. Recall that if v(x, t) € R3 is the velocity of a fluid at a point x € R3
at time t, then the vorticity of v is defined by

W=V xV.

Under the assumption that the flow is incompressible, the Biot-Savart relation reads
v=(—A) "IV x w). (5)
Proposition 2.

(a) Consider the velocity v in three spatial dimensions. Assume that v satisfies the Biot-Savart relation (5). Then at any fixed time t,
VG, DllB@s) + IVVE DI B2gs) < CIV X @, D@3

where C is a constant independent of t, v, and ®.
(b) Consider the velocity v in two spatial dimensions. Assume that v satisfies the Biot-Savart relation (3). Then at any fixed time t,

VG, Ol o2y + IVVE, Dl 22y < CIIVOC, D)1 R2) -

where C is a constant independent of t, v and w.

We remark that in two dimensions, by the Poincaré inequality, it follows from |[[VV]||;2g2) < 0o, that v lies in VMO(R?),
i.e. has vanishing mean oscillation.

Proof of Proposition 2. Note that
V- (Vxw)=0.

Thus we can immediately apply the result of Bourgain-Brézis [3] (see also [2,5,10]) to the Biot-Savart formula (5) and get
the desired conclusions in part (a).

To consider the 2-dimensional flow, note that (—dx,w, dx,®) is a vector field in R? with vanishing divergence. In view
of the two-dimensional Biot-Savart relation (3), we can then use the two-dimensional Bourgain-Brézis result [3], and we
obtain (b). O

We note further that the proposition applies to both the Euler (inviscid) or the Navier-Stokes (viscous) flow.

Proof of Theorem 1. Now set K; for the heat kernel in two dimensions, i.e.

Rewriting (2) as an integral equation for w using Duhamel’s theorem, where wy is the initial vorticity, we have
t
w(x,t) = K¢ xwo(x) + / OxKi—s *x [Vw(x, s)]1ds (6)
0

where v is given by (3).
We apply a Banach fixed point argument to the operator T given by

t
Tw(x,t) =K; *wo(x)+f8x1<t_s*[vw(x, s)]ds, (7)
0
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where again v is given by (3). Let us set

E=le | SUp I8 Olwae, < A},

<t<tp

We will first show that T maps E into itself, for typ chosen as in the theorem.
Differentiating (7) in the space variable once, we get

t t
(TwX,t)x = K¢ * fo(x) + / OxKe—s * (Vxw)ds + | 9xKi—s % (Vay) ds.
0 0
Here we denote by fy the spatial derivative of the initial vorticity wg. Using Young’s convolution inequality, we have

t
(T, O)xllp1 g2y < I foll 1@z + C / (t = )7 2(lvxwllp1 g2y + [IVaxll 1 gz)) ds.
0

Now we apply Proposition 2(b) to each of the terms on the right. For the first term, we have, by Cauchy-Schwartz,
Vel 1 g2y < CIVVI 22 ol 2 g2,

The Gagliardo-Nirenberg inequality applies as w € E and so (-, t) € L1 (R?) and so,
lollzgzy < ClIVell gz,

and to ||Vv||;2g2, we apply Proposition 2(b). Similarly, for the second term,
IVoxllp1 w2y < IVIEeo 2y looxll 1 2y -

Again we apply Proposition 2(b) to [|V||;(g2). Hence in all we have,

t
(Tl g2y < I follp @) +C f t =972Vl g, ds.
0

Thus setting | foll 1 g2y = lwollyiy11 g2y < Ao, We get for t <tp and since w € E,

IV(T@)(, )11 m2) < Ao + Cty > A2
Next from Young’s convolution inequality it follows from (7) that
t
IToC, Ol ) < Ao+ f (t =72 |veo(-. 5) 1 ds,
0
But by Proposition 2(b) again,
Vool < IVlloollolls < cA?.
Thus
ITwC. D)1 < Ao +ct'/?A.
So, adding the estimates for Tw and V(Tw), we have:

sup I Tw (-, 6) w11 g2y < 2A0 + cty > A2

t<to

By choosing A so that Ag=A/8 and t <ty = C/A(z), we can assure that if w € E, then

A
sup [[(Tw) (-, O)ll 1.1 g2y < =
t<to 2
Thus Tw € E, if w € E. If we establish that T is a contraction, then we are done.
Next we observe that the estimates in Proposition 2(b) are linear estimates. That is
Vi = V2lleo + IVV1 = VV2|l2 < Cllor — @21l w11 (g2

We easily can see from the computations above, that we have
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1/2
sup [Twr — Twallyi1 @) < CAty” sup w1 — w2l g2)-
t<tp t<tp

By the choice of tg, it is seen that T is a contraction. Thus using the Banach fixed-point theorem on E, we obtain our
operator T has a fixed point and so the integral equation (6) has a solution in E. The remaining part of our theorem follows
easily from Proposition 2(b). O

We note in passing an estimate in R3 from Proposition 2(a) above for the Navier-Stokes or the Euler flow:

sup ||Vl 3 g3y + Sup [[VV|l 323y < Csup ||V X @[l 1(g3y- (8)
t>0 t>0 t>0

2. Magnetism

We next turn to our results on magnetism. We denote by B(x,t) and E(x, t) the magnetic and electric field vectors at
(x,t) e R® x R. Let j(x, t) denote the current density vector. The Maxwell equations imply

V-B=0, (9)
B+ V xE=0, (10)
% E—V xB=—j. (11)

Differentiating (10) in ¢t and using (11), together with the vector identity V x (V x B) = V(V -B) — AB and (9), one obtains
an inhomogeneous wave equation for B:

Bir — AB=V x . (12)
The right side of (12) satisfies the vanishing divergence condition

V- (Vxj=0
for any fixed time t. Thus an improved Strichartz estimate, namely Theorem 1 in [6], applies. We point out that the

Bourgain-Brézis inequalities play a key role in the proof of Theorem 1 in [6]. We conclude easily:

Theorem 3. Let B satisfy (12) and let B(x, 0) = By, 3;B(x, 0) = By denote the initial data at time t = 0. Let s, k € R. Assume 2 < q < o0,
2<q<ooand2 <r < oc. Let (q,r) satisfy the wave compatibility condition

1 1 1
q r 2
and assume the following scale invariance condition is verified:
1 3 3 1
—4+ = —s==+1—k
q r 2 q

Then, for % + ql =1, we have

IBllgz; + IBllcogss + 19tBilcpjs-1 < CCUBollgs + B ljs-1 + =) (Tl ,).

The main point in the theorem above is that we have L! norm in space on the right side.
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