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RESUME
Keywords:
Analytic Nous appliquons le lemme de Ozaki et Umezawa sur les fonctions convexes dans une
Univalent direction, afin de trouver des conditions suffisantes pour l'univalence et la presque
Convex convexité.
Starlike
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Close-to-convex

Differential subordination

1. Introduction

Let H denote the class of functions analytic in the unit disk D = {z € C: |z| < 1}, and denote by A the class of analytic
functions in D and normalized, i.e. A={f € H: f(0) =0, f'(0) = 1}. We say that f € H is subordinate to g € # in the unit
disk D, written f < g if and only if there exists an analytic function w € H such that |w(z)| < |z| and f(z) = g[w(z)] for
z € D. Therefore f < g in D implies f (D) C g(D). In particular if g is univalent in D, then the Subordination Principle says
that f < g if and only if f(0) = g(0) and f(|z] <r) C g(|z| <), for all r € (0, 1].

Let us recall the Ozaki-Umezawa’s lemma [6,8].

Lemma 1.1. Let f(z) =z + az% + - - - be analytic for |z| <1 and f'(z) # 0 on |z| = 1. If there holds the relation

2
0/|1+9Qe{z}t,((zz))”d9<4n, Izl =1, (1.1)

then f(z) is convex in one direction and hence f(z) is univalent in |z| < 1.
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2. Main result

Theorem 2.1. Let f(z) =z + Zﬁiz anz" be analytic in D. Assume that
zf"(2)
@

where ag = 1/ cos tg and tg is the positive root of the equation

1+ Re <|14+%Ref{apz}| (zeD),

tant=t+m/2, O<t<m/2.
Then f (z) is univalent in D. Note that and 2.909 < «g < 2.992.

Proof. Applying [1] and [4], we have from (2.1)

27

27 . .
Zf// Z) B rel@ f//(rene)
/’1—1—9% 5 de—/ 1+9{27f’(re“’)
0 0
21
Sf‘l—l—%e{ozoreig”de,
0

where 0 <r < 1. Letting r — 1, we have

2T
2"(2)
1+R
0/ ‘ MR

de

27

< f |1+ agcos@|do.
0

We have
cos™! (=1/ag)=m — cos™! (1/ap).
Thus we obtain

27

fll + agcosf|do
0

cos ™ (—1/ag) 2 —cos ™' (—1/ag)
=2 / (14 agcosd)do — / (1 4+ agcosd)do
0 cos~1(—1/ap)
N . cos~1(—1/atg) . 2 —cos~ ' (—1/ap)
=2[0 + apsinf], — [0+ ap sm@]cos_](_]/ao)

+cos~1(1/ag)
—cos~1(1/ap)

=3[ —cos™(1/t0) + asin fcos™ (1/at0) |

7 —cos~1(1/ag)

=2[0 + apsinf], —[6 + apsinf]

— [Jr +cos~! (1/ap) — oo sin {cos’] (1/ap) H

— 47 + [—Zyr — 4cos~1(1/ag) + 4ag sin [cos*1 (1/ap) ” .

Therefore, we will get the univalence of f in the unit disk by Ozaki-Umezawa’s Lemma 1.1, whenever

—27 —4cos™! (1/ag) + 4ag sin {cos_1 (1/a0)} =0.

If to = cos~1(1/ap), then (2.5) becomes

-2 —4tg+4 sintg =0,

costy
which is assumed in (2.2). Note that 1.22 <ty <1.23. O

(21)

(2.2)

(2.4)

(2.5)
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In the same way as Theorem 2.1 we can prove the following sufficient condition for convexity.

Theorem 2.2. Let f(z) =z + Zﬁiz anz" be analytic in D. Assume that
zf" (2)
(@

then f(z) is convex univalent in ID.

‘l—i-f)‘ie <|14+Re{z}| (zeD), (2.6)

Proof. Applying the proof of Theorem 2.1, we have from (2.4)

21
O/ |1 + mezj{,((zz)) 46 < 47 + |27 — 4cos™!(1/@) + 4asin feos™ (1]

for all @ € (—oo — 1]U[1, 4+00). Putting o = 1, we have

2
zf"(2)
!'Hm o ’d(9§2n. (2.7)

On the other hand, we have for z = rel®

11 @
= | {z+f/<z>}dz

|z|=r
T @
zf"(z
= 1+ do.
/{ @ }
0
Hence
7 1)
zf"(z
1+R do =27x. 2.8
/ { * ef/(z)} T 28
0
By (2.7) and (2.8) we have
7 o). T ()
zf"(z zf"(z
1+%R do 1+%R do. 2.9
/|+ef’(z)‘ S”+ef’(z>} (29)
0 0
Therefore,

2f"(@) }
1 >0 (zeD).
%e{ + o | = (zeD)
Hence f(z) is convex univalent in D if we prove 1+ E}{e{l +z ”(z)/f’(z)} # 0 in |z| < 1. By the mathematical method
of absurdity, if there exists a point zo =rgexp(ifp), 0 <rg < 1, 0 < 6y < 2w for which 1+ Re {l +zof”(zo)/f’(20)} =0,
this shows that the image point, 1+ zof”(z0)/f'(zo) is located on the imaginary axis of the w-plane. Let us consider the
mapping of a very small domain D : |z — zg| < §, where § is sufficiently small and positive. Then the image domain of D by
the mapping w =1+ zf"(2)/f'(z) must take negative real value, because the function w =1+ 2zf"(z)/f’(z) is a continuous
function. This is a contradiction and it completes the proof. O

Umezawa in [8] proved that
’ f"(@)
f'@

implies the univalence of f(z) in |z| < 1. Notice also here that in [6] Ozaki proved that if f(z) =z + a2% +asz> +--- is
analytic in D, with f(z) f’(z)/z # 0 there, and if either

Zf"(Z) 1
e (1 M ) =73

<v6 (z1 <), (2.10)
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or

zZf"(2)\ _3
9%e<1+ f,(z))fi (211)

holds throughout D, then f is univalent and convex in at least one direction in ID. It has been generalized in [5,7]. The
number /6 in (2.10), was improved to 3.05... in [2]. Notice that the condition

zf"(2)

@
0 <o <2.832... is sufficient for starlikeness, [3, p. 273]. If f € A satisfies

zf'(z

Pe 'f (2)

el“g(2)
for some g(z) € S* and some « € (—m /2, /2), then f(z) is said to be close to convex (with respect to g(z)) in D and
denoted by f(z) € C. An univalent function f € S belongs to C if and only if the complement E of the image-region

F ={f(2):|z| < 1} is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the
rays).

1+

<140z (zeD),

} >0,zeD (2.12)

Theorem 2.3. Let f(z) =z + Y o, an2" be analytic in D and suppose that there exists a starlike function g(z) =z + Y e, bnz" for
which

zf"(z)  28'(2)
f'@ 2@

where 0 < o < 7w /4. Then f(z) is close to convex in D with respect to g(z).

S)fie{l + } <fRel{az} (zeD), (213)

Proof. It follows that
{Zf( )} arg{zof'(zo)}
) g(20)

(z
_9%/ {(Zf @) g/(Z)}dZ
Zf'(2)  g®@

:%/ {Z(Zf’(Z))/ 3 zg/(Z)}de,
zf'(2) &)

where z=rel?, 0 <r <1, 0<6 <2 and zg =rei®. Since

<Zf’(2)> 1
g2 /,—o

and the image domain of |z| <1 under the mapping w(z) = zf'(z)/g(z) contains the point z =1, there exist points z1, z,
for which

zi f'(zi) )
al @ o 212 214
rg( £(zi) ) l (214)

Therefore, for each z=e!? we can find z; = el such that |¢ — 6;| <7 and (2.14) holds.
Letting r — 1 and applying (2.13), we have

‘ar zf'(2)
g(2)

/‘9% { zf"(2) Zg/(Z)HdQ
'@ (2

< f [Re {az}|dO
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0
50{[ |cosf|do

(]
6+
<o / |cos6|do
0;
<2«
<m/2.
The maximum principle of harmonic functions shows that
zf'(z b4
’arg '@ < — (zeD).
g@ 2

Therefore, f is close to convex with respect to g. This completes the proof of Theorem 2.3 O
Applying the same method as used in the proof of Theorem 2.3, we have the following corollaries.

Corollary 2.4. Let f(z) =z + ) no,anz" be analytic in D and suppose that there exists a convex function g(z) = zh'(z) =
z+ Y 72 bpz" for which

. { zf" (2) B zh"(2)
@ W (z)

where 0 < @ < 7 /4. Then f(z) is close to convex in D with respect to g(z).

} <fRef{az} (zeD), (215)

If f e A satisfies
zf'(2)
f1=P(2)h (2)
for some h(z) € S* and some B € (0,00), then f(z) is said to be a Bazilevi¢ function of type 8 and is denoted by

f(2) € B(B).
Taking g(z) = f'~#(2)h#(z) in Theorem 2.3 we obtain the following result.

}>0,ze]D>

Corollary 2.5. Let f(z) =z+ ) ., an2z" be analytic in D and suppose that there exists a starlike function h(z) =z + Y ne , cpz" for
which

zf"(2) zf'(2) zh'(2)
—(1 - —
'@ -8 f@ g h(2)

where 0 < o < 7w /4. Then f(z) is a BazileviC function of type 8 and it is univalent in |z| < 1.

me{l + }sme{az} (zeD), (2.16)
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