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Characteristic functions

We derive conditional Gaussian type identities of the form
T T T
. 2 _ 1 2
E|exp|i [ usdB; |ug|“dt | =exp -3 lugl=dt |,
0 0 0

for Brownian stochastic integrals, under conditions on the process (u¢)ecfo,1] specified
using the Malliavin calculus. This applies in particular to the quadratic Brownian integral
fot AB; dBs under the matrix condition ATA2 =0, using a characterization of Yor [6].
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RESUME

Nous obtenons des identités gaussiennes conditionnelles de la forme

T

T T
1
E | exp ifu[dBt /\uflzdt =exp fifluflzdt ,
0 0

0

pour les intégrales stochastiques browniennes, sous des conditions sur le processus
(u¢)eefo,7] exprimées a I'aide du calcul de Malliavin. Ces résultats s’appliquent en particulier
a I'intégrale brownienne quadratique fot ABs dBs sous la condition matricielle ATA2 =0, en
utilisant une caractérisation de Yor [6].
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1. Introduction

Let (B¢)tefo,1] be a d-dimensional Brownian motion generating the filtration (F¢)refo,r;. When A is a d x d skew-
symmetric matrix, the identity

T T
1
E|exp i/ABsdBS B: | =E | exp —§/|ABS|2ds B: |, (1)
0 0

0 <t <T, has been proved in Theorem 2.1 of [1], extending a formula of [7] for the computation of the characteristic
function of Lévy’s stochastic area in case d = 2.
This approach is connected to a result of Yor [6] stating that when ATA2 =0, the filtration (]:[k)relo,TJ of t —~ fot AB;dBg

is generated by k independent Brownian motions, where k is the number of distinct eigenvalues of ATA.

In this Note, we derive conditional versions of the identity (1) for the stochastic integral /OT uy dB;¢ of an (F;)-adapted

process (ut)efo,7] in Theorem 1, under conditions formulated in terms of the Malliavin calculus, using the cumulant-
T T

moment formula of [3,4]. In particular we provide conditions for futdB[ to be Gaussian N | 0, / lug|? dt | -distributed
0 0

T
given /|th|2 dt, cf. Theorem 2. This holds for example when (u¢)refo,1] = (ABt)tefo,77 under Yor’s condition ATA2 =0, cf.
0

Corollary 3. We also consider a weakening of this condition to ATA? skew-symmetric, provided that ATA is proportional to
a projection, cf. Corollary 6.

2. Conditional characteristic functions
Let D denote the Malliavin gradient with domain D 1 on the d-dimensional Wiener space, cf. § 1.2 of [2] for definitions.
Taking H = L?([0, T]; RY) for some T > 0 and u in the domain D ;(H) of D in L¥($2; H), we let
T

T
(Du)fu; = f / (Deu) T (De_ ug)t - (Deyuey)Tug, deg - dty, t€[0,T], k>1.
0 0

Theorem 1. Let u ﬂkz] Dy 1 (H) be an (F;)-adapted process such that

(ug, (DU)kUt)Rd =0, te[0,T], k>1.
We have
T ) T
E | exp i/utdBt (lueDeefo, ) | =€Xp _§/|ut|2dt , (2)
0 0

T
1
provided that 3 / lu¢|? dt is exponentially integrable.
0

Proof. For any F €D, ; and k> 1, let
T T
TYF = IL{kzz}F/(ut,(Du)k_zut)Ra dt—i—/(DtF,(Du)k_]u[)Rd dt.
0 0

Recall that for any u € D, 1(H) such that F,‘: ~~~Fl"f<11 has finite expectation for all Iy +---+1, <n, k=1,...,n, by Theorem 1
of [3] or Proposition 4.3 of [4] we have

T n n E[Fﬁ---Ff‘F]
E|F B =n! :
/utd ‘ nZ Z L +) i+ +1o)’ G)

0 a=1 lj+-+lg=n
L>1,..,l;>1

for F € Dy 1. Next, for any f € C; (R) and k> 1 we have
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T b T
=1{k=2}/|ut|2dff /IUr|2dt /Iutl dt /<D /Iusl ds, (Dw)*~Tu > dt,
0 a 0
b b

T
—Jluczz}/wtﬁdtf /|ut|2dr +2f /|ut| dt /us,(Du) Us)pa ds,
0

b
=Lk= 2}/|Ut| def /qulzdt ., 0<acxh.
0 a
By induction, this yields
a
Fﬁ FIF Ly, = /lut| dt| F, Ii,....l¢>1, a>1, (4)

for any random variable F of the form
1 m
F=f /|ut|2dt,...,/|ut|2dt , 0<aj<b;<T, i=1,...,m,

where f € C; (R™), and by (3) and (4) we find

T 2n T n
2n)!
E /utdBt F _@n E /lutlzdt Fl, (5)
2™n!
0 0
T 2n+1
and E [utdB[) F|l|=0forallneN. O
0

The following result is obtained by an argument similar to the proof of Theorem 1.

Theorem 2. Let u € ﬂky Dy 1(H) be an (F;)-adapted process such that

(u, Dwkuyy =0,  k>1.

We have
T

T
1
E | exp i/utdBt /|ut|2dt =exp —Eflud de |,
0

0
T

1
provided that 3 / |u¢|? dt is exponentially integrable.
0

In the partlcular case where u; = R¢h, t € [0, T], h € H, where R is a random, adapted (or quasi-nilpotent) isometry of H,
we find that fo lue|2dt = fo |h(t)|? dt is deterministic, hence

(u, (DuYfu)y = <(Du>"1 D(u,u)y)y =0, k=>1,

and Theorem 2 shows that / (R¢h) dB; has a centered Gaussian distribution with variance fOT |h(t)|? dt, as in Theorem 2.1(b)

0
of [5].
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T
Theorems 1 and 2 also apply when /|u[|2 dt is random, for example when (u¢)icpo,r) takes the form u; = g(By),
0

t [0, T], where g € C}(R%RY) satisfies the condition (g(x), (Vg(x)"*gx))ps =0, x € RY, k > 1. Next, we check that
this condition is satisfied on concrete examples based on [6], when g is a linear mapping of the form g(x) = Ax, x € R,

2.1. Vanishing of ATA?

Applying Theorem 1 to the adapted process (u¢)¢efo,1] := (ABt)tefo,77 under Yor’s [6] condition ATAZ =0, by the relation
D¢Bs = 1g,5)(t)Ige we obtain the vanishing

T T
(ur, (DWkug)pa = / . / (e, (D) (D )T -+ (Deyey) Tag Yga dty - - - dity
0 0

t oty ty

://---f(ABt,(AT)"ABt)Ra dty --- dty
00 0

=0, te[0,T], k=>1.

This yields the next corollary of Theorem 1, in which the condition ATA2 =0 includes 2-nilpotent matrices as a particular
case.

Corollary 3. Assume that ATA2 = 0. We have
T . T
E | exp i/ABtdBt (IABt)reo.1) | =exp —§/|A3t|2 d |. (6)
0 0

Note that the filtration of (|AB¢|)ejo,1] coincides with the filtration (]:g{)[gl(),TJ generated by k independent Brownian
motions where k is the number of nonzero eigenvalues of ATA, cf. Corollary 2 of [6].

3. Skew-symmetric AT A2

When ATA has only one nonzero eigenvalue, i.e. ATA is proportional to a projection, the condition ATA2 =0 can be
relaxed using stochastic calculus, by only assuming that ATAZ2 is skew-symmetric. We start with the following variation of
Corollary 2 of [6].

Lemma 4. Assume that ATA? is skew-symmetric and AT A has a unique nonzero eigenvalue 1. Then the processes

t
AB;

|ABs|

t
vl | AB;
! mo |ABs|

are independent standard Brownian motions.

dABs, and Y?:=

dBs, tel[0,T], (7)

Proof. Since ATA is symmetric it can be written as ATA = RTCR, where R is orthogonal and C is diagonal, therefore since
(RB¢)tero,17 is also a standard Brownian motion we can assume that ATA has the form ATA = (M1 <k=l<r})1<k,I<d With
Ai>0,1<i<r. Clearly (Yf)te[o,r] is a standard Brownian motion, and

(ATA?B;, By)

diyl, v?),=—"" " dr=0.
|AB¢|2/A1
-12 r
In addition, we have dy! = ~1 2;BLdB! and
t |ABt| ; =2t t
1 y1 ()‘132)2+"'+()‘ng)2
(Y'Y ) =

M(r (B) -+ A (B])’)

hence (Ytl)te[O,T] is also a standard Brownian motion when A1 =---=A,. O



N. Privault, Q. She / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1153-1158 1157

The following result relaxes the vanishing hypothesis of Corollary 3.

Corollary 5. Assume that ATA? is skew-symmetric and AT A has a unique nonzero eigenvalue A1. Then we have
T

T
. 1
E | exp 1/ABtdBt (IAB¢])tefo,1] | =exp —§/|ABt|2 de|]. (8)

0 0

Proof. We let S; :=|AB:|%, t €[0, T], and note that by Corollary 2 of [6], the filtration generated by (|AB¢|)tefo, 7 coincides
with the filtration (F)¢ef0.77 of (Y)¢ejo.7)- Next, Itd’s formula shows that

t t
St:2/ABSdABS+Tr (ATA)t:Z/\/)qSSdY; +ragt,  tel0,Tl,
0 0

hence (|AB¢|)tefo,1] is (ftl)tdo,r]—adapted and therefore independent of (Yz)tE[O,TJ, hence
T T
/ABtdBt:f|ABt|dYt2
0 0

is centered Gaussian with variance fOT |AB:|? dt given FI, which yields (8). O

3.1. Commutation with orthogonal matrices

Under the assumptions of Corollaries 3 or 5 it follows that
T

T

1

E | exp i/ABtdBt |AB;| | =E | exp —§f|ABt|2 dt | ||AB¢| |, (9)
0 0

since (|AB¢|)tefo, 17 and (Ytl)[e[o,r] generate the same filtration on (ftl)te[O,T}

Corollary 6. Assume that either ATA%2 = 0, or ATA2 is skew-symmetric and ATA has a unique nonzero eigenvalue. If in addition A
commutes with orthogonal matrices, then we have

T T
1
E | exp i/ABsst AB: | =E | exp —§/|ABS|2ds AB: |, (10)
0 0

Proof. We check that for any d x d orthogonal matrix R we have

r T T

E | exp i/ABtdBt AB;=Rx | =E | exp i/ABtdBt ABr=x|,
L 0 0

x € RY, which shows that
r T T

E | exp i/AdeBt AB; | =E | exp i/ABtdBt |AB¢|

L 0 0

and similarly for the right-hand side, and we conclude by (9). O

3.2. Skew-symmetric orthogonal A

We note that when A is skew-symmetric and orthogonal, the condition ATA2 skew-symmetric is satisfied as in this case
we have (ATA2)T = ATATA=AT=—A=—ATA2, and (10) can be written as

T T
1
E | exp i/ABSdBS Bt | =E | exp —E/|ABS|2d5 Bt |, (11)
0 0
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0 1
-1 0
ATAZ = A is skew-symmetric, in which case we recover the result of [7] that has been used to show that (11) holds when
A is skew-symmetric and not necessarily orthogonal in Theorem 2.1 of [1].

0 <t < T. This holds in particular when A = < ) in which case ATA = Ig2 has the unique eigenvalue A1 =1 and
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