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We prove a central limit theorem for stationary random fields of martingale differences 
f ◦ Ti , i ∈ Z

d , where Ti is a Zd action and the martingale is given by a commuting filtration. 
The result has been known for Bernoulli random fields; here only ergodicity of one of 
commuting transformations generating the Zd action is supposed.
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r é s u m é

Le théorème limite centrale pour un champ aléatoire f ◦ Ti , i ∈ Z
d , de différences d’une 

martingale est démontré. Le résultat est connu pour les champs aléatoires de Bernoulli ; 
ici, l’ergodicité d’un seul générateur de l’action Ti est supposée.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the study of the central limit theorem for dependent random variables, the case of martingale difference sequences 
has played an important role, cf. Hall and Heyde, [9]. Limit theorems for random fields of martingale differences were stud-
ied for example by Basu and Dorea [1], Morkvenas [14], Nahapetian [15], Poghosyan and Roelly [17], Wang and Woodroofe 
[21]. Limit theorems for martingale differences enable a research of much more complicated processes and random fields. 
The method of martingale approximations, often called Gordin’s method, originated by Gordin’s 1969 paper [7]. The approx-
imation is possible for random fields as well; for most recent results, see, e.g., [21] and [18]. Remark that another approach 
was introduced by Dedecker in [6] (and is being used since); it applies both to sequences and to random fields.

For random fields, the martingale structure can be introduced in several different ways. Here we will deal with a sta-
tionary random field f ◦ Ti , i ∈ Z

d , where f is a measurable function on a probability space (�, μ, A) and Ti , i ∈ Z
d , is 

a group of commuting probability preserving transformations of (�, μ, A) (a Zd action). By ei ∈ Z
d we denote the vector 

(0, . . . , 1, . . . , 0) having 1 on the i-th place and 0 at all other places, 1 ≤ i ≤ d.
Fi , i = (i1 . . . , id) ∈ Z

d , is an invariant commuting filtration (cf. D. Khosnevisan, [11]) if

(i) Fi = T−iF0 for all i ∈ Z
d ,
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(ii) Fi ⊂ F j for i ≤ j in the lexicographic order, and

(iii) Fi ∩F j =Fi∧ j , i, j ∈ Z
d , and i ∧ j = (min{i1, j1}, . . . , min{id, jd}).

If, moreover, E
(

E( f |Fi)
∣∣F j

)
= E( f |Fi∧ j), for every integrable function f , we say that the filtration is completely commuting

(cf. [8,18]).
By F (q)

l , 1 ≤ q ≤ d, l ∈ Z, we denote the σ -algebra generated by the union of all Fi with iq ≤ l. For d = 2 we by 
F∞, j =F (2)

j denote the σ -algebra generated by the union of all Fi, j , i ∈ Z, and in the same way we define Fi,∞ .

We sometimes denote f ◦ Ti by Ui f ; f will always be from L2; by L2 we understand L2(μ) and by L2 we denote 
L2(μ).

We say that Ui f , i ∈ Z
d , is a field of martingale differences if f is F0-measurable and whenever i = (i1 . . . , id) ∈ Z

d is such 
that iq ≤ 0 for all 1 ≤ q ≤ d and at least one inequality is strict, then E( f | Fi) = 0.

Notice that Ui f is then Fi -measurable, i = (i1 . . . , id) ∈ Z
d , and if j = ( j1 . . . , jd) ∈ Z

d is such that jk ≤ ik for all 1 ≤ k ≤ n
and at least one inequality is strict, E(Ui f | F j) = 0.

Notice that by commutativity, if Ui f are martingale differences then

E( f |F (q)
−1) = 0

for all 1 ≤ q ≤ d. ( f ◦ T j
eq ) j is thus a sequence of martingale differences for the filtration of F (q)

j . In particular, for d = 2, 

( f ◦ T j
e2 ) is a sequence of martingale differences for the filtration of F∞, j =F (2)

j .

Recall that a measure-preserving transformation T of (�, μ, A) is said to be ergodic if for any A ∈A such that T −1 A = A, 
μ(A) = 0 or μ(A) = 1. Similarly, a Zd action (Ti)i is ergodic if for any A ∈A such that T−i A = A, μ(A) = 0 or μ(A) = 1.

A classical result by Billingsley and Ibragimov says that if ( f ◦ T i)i is an ergodic sequence of martingale differences, the 
central limit theorem holds. The result does not hold for random fields, however.

Example. As noticed in a paper by Wang, Woodroofe [21], for a 2-dimensional random field, Zi, j = Xi Y j , where Xi and Y j , 
i, j ∈ Z, are mutually independent N (0, 1) random variables, we get a convergence towards a non-normal law. The random 
field of Zi, j can be represented by an ergodic action of Z2.

Let (�, μ, A) be a product of probability spaces (�′, μ′, A′) and (�′′, μ′′, A′′) equipped with ergodic measure preserving 
transformations T ′ and T ′′ . On � we then define a measure preserving Z2 action Ti, j(x, y) = (T ′ i x, T ′′ j y). The σ -algebras 
A′, A′′ are generated by N (0, 1), iid sequences of random variables (e′ ◦ T ′ i)i and (e′′ ◦ T ′′ i)i , respectively. The dynamical 
systems (�′, μ′, A′, T ′) and (�′′, μ′′, A′′, T ′′) are then Bernoulli hence ergodic (cf. [4]). On the other hand, for any A′ ∈A′ , 
A′ × �′′ is T0,1-invariant hence T0,1 is not an ergodic transformation. Similarly we get that T1,0 is not an ergodic transfor-
mation either. By ergodicity of T ′, T ′′ , A′ × �′′ , A′ ∈ A′ , are the only T0,1-invariant measurable subsets of � and A′′ × �′ , 
A′′ ∈ A′′ , are the only T1,0-invariant measurable subsets of � (modulo measure μ). Therefore, the only measurable subsets 
of �, which are invariant both for T0,1 and for T1,0, are of measure 0 or of measure 1, i.e. the Z2 action Ti, j is ergodic.

On � we define random variables X, Y by X(x, y) = e′(x) and Y (x, y) = e′′(y). The random field of (XY ) ◦ Ti, j then has 
the same distribution as the random field of Zi, j = Xi Y j described above. The natural filtration of Fi, j = σ {(XY ) ◦ Ti′, j′ :
i′ ≤ i, j′ ≤ j} is commuting and ((XY ) ◦ Ti, j)i, j is a field of martingale differences.

A very important particular case of a Zd action is the case when the σ -algebra A is generated by iid random variables 
Uie, i ∈ Z

d . The σ -algebras F j = σ {Ui : ik ≤ jk, k = 1, . . . , d} are then a completely commuting filtration and if Ui f , i ∈ Z
d

is a martingale difference random field, the central limit theorem takes place (cf. [21]). This fact enabled to prove a variety 
of limit theorems by martingale approximations (cf., e.g., [18,21]).

For Bernoulli random fields, other methods of proving limit theorems have been used, cf., e.g., [2,5,20].
The aim of this paper is to show that for a martingale difference random field, the CLT can hold under assumptions 

weaker than Bernoullicity.

2. Main result

Let Ti , i ∈ Z
d , be a Zd action of measure preserving transformations on (�, A, μ), (Fi)i , i ∈ Z

d , be a commuting filtration. 
By ei ∈ Z

d we denote the vector (0, . . . , 1, . . . , 0) having 1 on the i-th place and 0 at all other places, 1 ≤ i ≤ d.

Theorem. Let f ∈ L2 , be such that ( f ◦ Ti)i is a field of martingale differences for a completely commuting filtration Fi . If at least one 
of the transformations Tei , 1 ≤ i ≤ d, is ergodic then the central limit theorem holds, i.e. for n1, . . . , nd → ∞ the distributions of

1√
n1 . . .nd

n1∑
i1=1

. . .

nd∑
id=1

f ◦ T(i1,...,id)

weakly converge to N (0, σ 2) where σ 2 = ‖ f ‖2 .
2
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Remark 1. The results from [18] remain valid for Zd actions satisfying the assumptions of the Theorem, only convergence 
of finite distributions is to be proved. Bernoullicity thus can be replaced by ergodicity of one of the transformations Tei . 
Under the assumptions of the Theorem, we thus also get a weak invariance principle. [18] implies many earlier results, cf. 
references there and in [21].

The central limit theorem for a summation over more general sets has been treated for the Bernoulli case, cf. [12]. In the 
general (ergodic) case the result does not hold even in dimension one because the CLT for martingale difference sequences 
need not remain true for subsequences (it does if the dynamical system is Bernoulli), see [19].

Proof. We prove the theorem for d = 2. Proof of the general case follows by induction.
We suppose that the transformation T0,1 is ergodic and ‖ f ‖2 = 1. To prove the central limit theorem for the random 

field it is sufficient to prove that for mk, nk → ∞ as k → ∞,

1√
mknk

mk∑
i=1

nk∑
j=1

f ◦ Ti, j converge in distribution to N (0,1). (1)

Recall the central limit theorem by D.L. McLeish (cf. [13]) saying that if Xn,i , i = 1, . . . , kn , is an array of martingale 
differences such that

(i) max1≤i≤kn |Xn,i| → 0 in probability,
(ii) there is an L < ∞ such that max1≤i≤kn X2

n,i ≤ L for all n, and

(iii)
∑kn

i=1 X2
n,i → 1 in probability,

then 
∑kn

i=1 Xn,i converge to N (0, 1) in law.
Next, we will suppose kn = n; we will denote Ui, j f = f ◦ Ti, j . For a given positive integer v and positive integers u, n

define

Fi,v = 1√
v

v∑
j=1

Ui, j f , Xn,i = Xv,n,i = 1√
n

Fi,v , i = 1, . . . ,n

(the Xn,i depends on v). Clearly, Xn,i are martingale differences for the filtration (Fi,∞)i . We will verify the assumptions of 
McLeish’s theorem.

The conditions (i) and (ii) are well known to follow from stationarity. For the reader’s convenience, we recall their proofs.
(i) For ε > 0 and any integer v ≥ 1,

μ( max
1≤i≤n

|Xn,i| > ε) ≤
n∑

i=1

μ(|Xn,i| > ε) = nμ

(∣∣∣∣∣ 1√
nv

v∑
j=1

U0, j f

∣∣∣∣∣ > ε

)

≤ 1

ε2
E

((
1√
v

v∑
j=1

U0, j f

)2

1| ∑v
j=1 U0, j f |≥ε

√
nv

)
→ 0

as n → ∞; this proves (i). From the CLT for 1√
v

∑v
j=1 U0, j f it follows that ( 1√

v

∑v
j=1 U0, j f )2 are uniformly integrable hence 

the convergence in (i) is uniform for v .
To see (ii) we note

(
max

1≤i≤n
|Xn,i|

)2 ≤
n∑

i=1

X2
n,i = 1

n

n∑
i=1

(
1√
v

v∑
j=1

Ui, j f

)2

which implies E(max1≤i≤n |Xn,i|)2 ≤ 1.
It remains to prove (iii).
Let us fix a positive integer m and for constants a1, . . . , am consider the sums

m∑
i=1

ai

v∑
j=1

Ui, j f , v → ∞.

Then (
∑m

i=1 ai Ui, j f ) j , j = 1, 2, . . ., are martingale differences for the filtration (F∞, j) j and by the central limit theorem 
of Billingsley and Ibragimov [3,10] (we can also use the McLeish’s theorem)
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1√
v

v∑
j=1

(
m∑

i=1

ai Ui, j f

)

converge in law to N (0, 
∑m

i=1 a2
i ). Notice that here we use the assumption of ergodicity of T0,1.

From this it follows that the random vectors (F1,v , . . . , Fm,v) converge in law to a vector (W1, . . . , Wm) of m mutually 
independent and N (0, 1) distributed random variables. For a given ε > 0, if m = m(ε) is sufficiently big then we have ∥∥1 − (1/m) 

∑m
u=1 W 2

u

∥∥
1 < ε/2. Using a truncation argument we can from the convergence in law of (Fu,v , . . . , Fm,v) towards 

(W1, . . . , Wm) deduce that for m = m(ε) sufficiently big and v bigger than some v(m, ε),∥∥∥∥∥1 − 1

m

m∑
u=1

F 2
u,v

∥∥∥∥∥
1

< ε.

Any integer N ≥ 0 can be expressed as N = pm + q where 0 ≤ q ≤ m − 1. Therefore

1

N

N∑
i=1

F 2
i,v − 1 = m

N

p−1∑
k=0

(
1

m

(k+1)m∑
i=km+1

F 2
i,v − 1

)
+ 1

N

N∑
i=mp+1

F 2
i,v − q

N
. (2)

There exists an Nε such that for N ≥ Nε we have ‖ 1
N

∑N
i=mp+1 F 2

i,v − q
N ‖1 < ε . Hence if v ≥ v(m, ε) and N ≥ Nε then∥∥∥∥∥1 − 1

N

N∑
i=1

F 2
i,v

∥∥∥∥∥
1

=
∥∥∥∥∥1 − 1

N v

N∑
i=1

(
v∑

j=1

Ui, j f

)2∥∥∥∥∥
1

< 2ε. (3)

This proves that for ε > 0 there are positive integers v(m(ε/2), ε/2) and Nε/2 such that for M ≥ v(m(ε/2), ε/2) and 
n ≥ Nε/2, for Xn,i = (1/

√
n)Fi,M∥∥∥∥∥

n∑
i=1

X2
n,i − 1

∥∥∥∥∥
1

=
∥∥∥∥∥

n∑
i=1

(
1√
nM

M∑
j=1

Ui, j f

)2

− 1

∥∥∥∥∥
1

< ε.

In the general case, we can suppose that Ted is ergodic (we can permute the coordinates). Instead of Ti, j we will 
consider transformations Ti, j where i ∈ Z

d−1 and in (3), instead of segments {km + 1, . . . , km + m} we take boxes of (k1m +
i1, . . . , kd−1m + id−1), i1, . . . , id−1 ∈ {1, . . . , m}.

Let us give a sketch of an induction leading to a proof for dimension d > 2.
Without loss of generality we can suppose that Te1 is ergodic. We will suppose that the Theorem is true for the random 

field generated by Te1 , . . . , Ter , 2 ≤ r < d. We denote the transformation T i1
e1 . . . T ir

er T i
er+1

by Ti, j and f ◦ Ti, j by Ui, j f , where 
j = (i1, . . . , ir).

For v = {1, . . . , N1} × · · · × {1, . . . , Nr} with cardinality |v| = N1 · . . . · Nr we denote Fi,v = (1/|v|1/2) 
∑

j∈v Ui, j f , i ∈ Z, 
and Xn,i = Xv,n,i = (1/

√
n)Fi,v , i = 1, . . . , n. (Xn,i)i is a martingale difference sequence and (i), (ii) can be verified as before.

By assumption, for any vector of (a1, . . . , am) ∈ R
m and m ∈ N the CLT holds true also for the r-dimensional random 

field (
∑m

i=1 ai Ui, j f ) j∈Nr . We thus get a convergence in law of the random vectors (F1,v , . . . , Fm,v) towards a Gaussian 
vector of iid random variables (W1, . . . , Wm) and we deduce (iii) as before. The CLT for the random field generated by 
Te1 , . . . , Ter , Ter+1 follows.

This finishes the proof of the Theorem. �
Remark 2. The conditions (i)–(iii) imply the CLT even if the martingale difference sequences (Xn,i)i do not belong to the 
same probability spaces, in particular have not the same filtration. By taking Yn,i = Xn,kn−i+1, we thus can deduce the CLT 
for the case of a decreasing filtration. The Theorem therefore remains true if (Fi)i is a decreasing commuting filtration (it 
can be defined similarly as the increasing one).

Remark 3. For any positive integer d there exists a random field of martingale differences ( f ◦ Ti) for a commuting filtration 
of Fi where Ti , i ∈ Z

d , is a non-Bernoulli Zd action and all Tei , 1 ≤ i ≤ d, are ergodic.

To show this we take a Bernoulli Zd action Ti , i ∈ Z
d on (�, A, μ) generated by iid random variables (e ◦ Ti) as defined, 

e.g., in [21] or [18].
Then we take another Zd action of irrational rotations on the unit circle (identified with the interval [0, 1)) generated by 

τei = τθi , τθi x = x + θi mod 1; θi , 1 ≤ i ≤ d, are linearly independent irrational numbers. The unit circle is equipped with the 
Borel σ -algebra B and the (probability) Lebesgue measure λ.

On the product � ×[0, 1) with product σ -algebra and product measure, we define the product Zd action (Ti ×τi)(x, y) =
(Ti x, τi y). From the ergodicity of the product of two transformations where one is ergodic and the other Bernoulli (hence 
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weakly mixing), we conclude that for every ei , 1 ≤ i ≤ d, Tei × τei is ergodic (cf. [16]). The product Zd action is not Bernoulli 
(it has irrational rotations for factors).

On � × [0, 1) we define a filtration F(i1,...,id) = σ {U (i′,...,i′d)e ◦ π1, i′ − 1 ≤ i1, . . . , i′d ≤ id, π−1
2 B} where π1, π2 are the 

coordinate projection of � × [0, 1).
The filtration defined above is commuting and we can find a random field of martingale differences satisfying the as-

sumptions of the Theorem.

Remark 4. In the one-dimensional central limit theorem, non-ergodicity implies a convergence towards a mixture of normal 
laws. This comes from the fact that using a decomposition of the measure μ into ergodic components, we get the “ergodic 
case” for each of the components (cf. [19]); the variance is given by the limit of (1/n) 

∑n
i=1 U i f 2, which by the Birkhoff 

Ergodic Theorem exists a.s. and in L1 and is T -invariant. In the case of a Z2 action (taking d = 2 for simplicity), the limit 
for T0,1 need not to be T1,0-invariant. This is exactly the case described in the Example and eventually we got there a 
convergence towards a law, which is not normal.
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