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We consider the quasilinear parabolic–elliptic chemotaxis system{
ut = ∇ · (D(u)∇u − χu∇v) + g(u), x ∈ �, t > 0,

0 = �v − v + u, x ∈ �, t > 0,

under homogeneous Neumann boundary conditions in a smooth bounded domain � ⊂
R

n, n ≥ 1. We assume that the functions D and g are smooth and satisfy

D(s) > 0 for s ≥ 0, D(s) ≥ C D sm−1 for s > 0,

g(0) ≥ 0, g(s) ≤ a − bsγ , s > 0

with some constants C D > 0, m ≥ 1, a ≥ 0, b > 0 and γ > 2.
We prove that the classical solutions to the above system are uniformly in-time-bounded 
without any restrictions on m and b. This result extends one of the recent results by Wang 
et al. (2014) [16], which assert the boundedness of solutions for γ > 2 under the condition 
b > b∗ with b∗ = 0 for m ≥ 2 − 2

n and b∗ = (2−m)n−2
(2−m)n χ for m < 2 − 2

n .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons le système quasi linéaire, parabolique–elliptique, de chimiotaxie{
ut = ∇ · (D(u)∇u − χu∇v) + g(u), x ∈ �, t > 0,

0 = �v − v + u, x ∈ �, t > 0,

avec des conditions au bord homogènes de Neumann, dans un domaine lisse, borné � ⊂
Rn , n ≥ 1. Nous supposons que les fonctions D et

D(s) > 0 pour s ≥ 0, D(s) ≥ C D sm−1 pour s > 0,

g(0) ≥ 0, g(s) ≤ a − bsγ , s > 0
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pour certaines constantes C D > 0, m ≥ 1, a ≥ 0, b > 0 et γ > 2.
Nous démontrons que les solutions classiques du système ci-dessus sont uniformément 
bornées en temps, sans restriction sur m et b. Ceci étend un résultat récent de Wang et 
al. (2014) [16], qui borne les solutions pour γ > 2 sous la condition b > b∗, où b∗ = 0 si 
m ≥ 2 − 2

n et b∗ = (2−m)n−2
(2−m)n χ si m < 2 − 2

n .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we study the following initial boundary value problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u − S(u)∇v) + g(u), x ∈ �, t > 0,

τ vt = �v − v + u, x ∈ �, t > 0,
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0, v(x,0) = v0, x ∈ �,

(1.1)

where � ⊆R
n, n ≥ 1, is a bounded domain with smooth boundary, τ ∈ {0, 1} and ν denotes the unit outward normal vector 

to ∂�. We assume that S(u) = χu with χ > 0 and the function D belongs to C2([0, ∞)) and satisfies

D(s) > 0 for s ≥ 0, D(s) ≥ C D sm−1 for s > 0 (1.2)

with some constants C D > 0 and m ≥ 1. We also assume that g is a smooth function that satisfies

g(0) ≥ 0, g(s) ≤ a − bsγ for s > 0 (1.3)

with constants a ≥ 0, b > 0 and γ > 2. Moreover, u0 ∈ Cα(�) and v0 ∈ W 1,r(�) for some α > 0 and r > n.
Problems of this kind are used in mathematical biology to illustrate the mechanism of chemotaxis, that is, the movement 

of cells towards the gradient of a substance called chemoattractant produced by the cells themselves. Here, u = u(x, t)
denotes the cell density and v = v(x, t) is the concentration of the chemical substance. While the functions D and S are 
the diffusivity and chemotactic sensitivity, respectively, and g is the growth of u [7,4].

In the absence of a logistic source, when D ≡ 1, S(u) = χu with χ > 0 and τ > 0, for the one-dimensional case, it 
is shown that blow-up phenomena cannot occur [11]. For the two-dimensional case, it is proved that if ‖u0‖L1(�) < 4π

χ , 
then all solutions are global and bounded [10]. While for ‖u0‖L1(�) > 4π

χ , solutions become unbounded either in finite or 
infinite time [5]. For higher-dimensional case, it is shown that for each q > n

2 and p > n, there exists ε0 > 0 such that if 
‖u0‖Lq(�) < ε and ‖v0‖Lp(�) < ε for ε < ε0, then the corresponding solutions are global and bounded [18]. Also, when � is 
a ball for ‖u0‖L1(�) > 0, it is proved that there exist solutions blow up in finite time [22]. For the case D ≡ 1, S(s) ≤ c(s +1)q

for s ≥ 0 with c > 0 and τ > 0, solutions are global and bounded provided that q < 2
n and solutions blow up in finite time 

or infinite time if S(s) ≥ c(s + 1)q for s ≥ 0 with c > 0 and q > 2
n [6]. When � is a bounded convex domain in Rn, n ≥ 2, 

and τ > 0, then solutions are uniformly-in-time bounded provided that S(s)
D(s) ≤ c(s + 1)α for s ≥ 0 with c > 0 and α < 2

n and 
other additional conditions are fulfilled [13], whereas for the case where S(s)

D(s) ≥ c(s + 1)α for s ≥ 0 with c > 0 and α > 2
n , 

there exist solutions blow up either in finite or infinite time [19]. If the second equation is replaced with 0 = �v − M + u, 
where M denotes the mean value of initial data u0, then under the conditions D(s) ≥ cD s−p and S(s) ≤ cS sq for s ≥ 1
with cD , cS > 0, p ≥ 0 and q ∈ R, all solutions are global and uniformly bounded provided that p + q < 2

n , whereas for 
0 < D(s) ≤ cD s−p and S(s) ≥ cS s(s + 1)q−1 for s ≥ 0 with cD , cS > 0, p ≥ 0, q > 0 and p + q > 2

n , there exist radial solutions 
that become unbounded in finite time [25].

In the presence of logistic source, when D ≡ 1, S(u) = χu with χ > 0 and τ = 0, it is proved that problem (1.1) admits 
at least one global very weak solution if γ > 2 − 1

n [17]. Also, in this case, it is shown that solutions are global and bounded 
if γ = 2 and b > n−2

n χ [14]. The same result is true for τ > 0 and γ = 2 provided that n ≤ 2 or n ≥ 3 and b > b0 with 
b0 sufficiently large [12,20]. Also, in this case, for n ≥ 3, it is proved that there exists at least one global weak solution for 
arbitrary b > 0 [8]. Moreover, in this case when the ratio b

χ is sufficiently large, it is shown that for any choice of suitably 
regular nonnegative initial data, there exists a unique global classical solution (u, v) such that ‖u(., t) − 1

b ‖L∞(�) → 0 and 
‖v(., t) − 1

b ‖L∞(�) → 0 as t → ∞ [23]. If the first equation is written as ut = −∇ · (u∇v) + au − bu2 and τ = 0, then all 
solutions are global in time for b ≥ 1, and there exist solutions blow up in finite time if b < 1. These results have been 
obtained by Winkler for the one-dimensional case [24] and Lankeit for higher-dimensional case [9]. When � is a ball in 
R

n, n ≥ 5, for the case D ≡ 1 and S(u) = χu with χ > 0, if the second equation is replaced with 0 = �v +u − 1
|�|

∫
�

u(x, t)dx
and g satisfies in the condition g(s) ≥ −bsγ for s ≥ 0 with b ≥ 0 and γ > 1 and other additional conditions, then radially 
symmetric solutions blow up in finite time provided that 1 < γ < 3 + 1 [21]. Also, for n ≥ 5 in the case where D(s) ≤ s−p
2 2n−2
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and S(s) = sq for s > 0 with p, q ∈ R and g satisfies in the condition g(s) ≥ a − bsγ for s ≥ 0 with a, b ≥ 0 and γ > 1
and other additional conditions, blow-up phenomena occur in finite time if 2

n − 1 < p < 1, q > 1 with 2p + 3q < 4 and 
1 < γ <

(3−p)n−2
2n−2 [26]. Moreover, it is shown that under the conditions D(s) ≥ (s + 1)−p and S(s) ≤ sq for s ≥ 0 with 

p, q ∈ R, all solutions are global and uniformly bounded provided that p + q < 2
n and γ > 1 or p + q ≥ 2

n , b > (p+q)n−2
(p+q)n χ

and γ ≥ q + 1 with q ≥ 1 [26]. In the case where τ > 0, under the conditions D(s) ≥ c1sp, c2sq ≤ S(s) ≤ c3sq for s ≥ s0 > 1
with ci > 0, i = 1, 2, 3 and p, q ∈ R and g is smooth on [0, ∞) satisfying g(s) ≤ as − bs2 for s ≥ 0 with a ≥ 0 and b > 0, it 
is proved that the solutions are global and bounded provided that q < 1. This result is independent of the choice of p [2]. 
Wang et al. [16] studied problem (1.1) under the conditions (1.2) and (1.3) with S(u) = χu and τ = 0, where χ is some 
positive constant. Their results improve the recent result in [3], which asserts the boundedness of solutions with γ = 2
under the condition b > χ(1 − 2

n(1−m)+ ), or, equivalently, m > 1 − 2χ
n(χ−b)+ . In fact, Wang et al. proved that for γ ≥ 2 under 

the condition b > b∗ with b∗ = 0 for m ≥ 2 − 2
n and b∗ = (2−m)n−2

(2−m)n χ for m < 2 − 2
n , problem (1.1) has a unique nonnegative 

classical solution, which is global and bounded. They also proved that the same result is true provided that 1 < γ < 2 and 
m > 2 − 2

n . Besides, for the case γ = 2, under the conditions 0 < b ≤ (2−m)n−2
(2−m)n χ and m < 2 − 2

n , they proved that problem 
(1.1) has at least one nonnegative global solution in the weak sense.

In the present paper, we will study problem (1.1) with τ = 0 under the conditions (1.2) and (1.3). We will prove that for 
γ > 2, problem (1.1) has a unique solution, which is uniformly in-time-bounded. We do not know, for the limit case γ = 2
under the conditions 0 < b ≤ (2−m)n−2

(2−m)n χ and m < 2 − 2
n , whether solutions exist globally or blow up in finite time. So, the 

global existence or the blowing up of solutions will remain an open question in the case where m < 2 − 2
n and 1 < γ ≤ 2. 

In the next section, we will prove the above result.

2. Proof of main result

Here, we state the standard well-posedness and classical solvability result.

Lemma 2.1. Let functions D and g satisfy (1.2) and (1.3). Moreover, we assume that u0 ∈ Cα(�) and v0 ∈ W 1,r(�) are nonnegative 
functions for some α > 0 and r > n. Then problem (1.1) has a unique non-negative classical solution that can be extended up to its 
maximal existence time Tmax ∈ (0, ∞]. In addition, if Tmax < +∞, then

lim
t→Tmax

‖u(., t)‖L∞(�) = ∞.

For details of the proof, we refer the reader to [25,16].
In order to prove the boundedness of the solution, we need the following lemma, which is given in [15].

Lemma 2.2. Let y be a positive absolutely continuous function on (0, ∞) that satisfies{ dy
dt + Ayp ≤ B,

y(0) = y0

with some constants A > 0, B ≥ 0 and p > 1. Then for t > 0, we have

y(t) ≤ max

{
y0,

( B

A

) 1
p

}
.

Although the proof of the following lemma is given in [16], we present it here for completeness.

Lemma 2.3. Assume that the function g satisfies (1.3). Then for all t ∈ (0, Tmax), there exists a constant C > 0 such that

‖u(., t)‖L1(�) ≤ C . (2.1)

Proof. Integrating the first equation in (1.1) and using (1.3), we get

d

dt

∫
�

u dx =
∫
�

g(u)dx ≤
∫
�

(a − buγ )dx.

Hence,

d

dt

∫
u dx + b

∫
uγ dx ≤ a|�|. (2.2)
� �
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Making use of Hölder’s inequality, we obtain∫
�

uγ dx ≥
(∫

�

u dx
)γ |�|1−γ .

Combining this inequality with (2.2) gives

d

dt

∫
�

u dx + b|�|1−γ
(∫

�

u dx
)γ ≤ a|�|.

Because of γ > 2, we can apply Lemma 2.2 and obtain the desired result. �
Lemma 2.4. Assume that the function g satisfies (1.3). Then for all k > 1 and t ∈ (0, Tmax), there exists a constant C > 0 such that

‖u(., t)‖Lk(�) ≤ C .

Proof. At first, we compute

d

dt

∫
�

ukdx = k

∫
�

uk−1ut dx

= k

∫
�

uk−1∇ ·
(

D(u)∇u − χu∇v
)

dx + k

∫
�

uk−1 g(u)dx

≤ −k(k − 1)

∫
�

uk−2 D(u)|∇u|2 dx + k(k − 1)χ

∫
�

uk−1∇u · ∇v dx

+ ak

∫
�

uk−1 dx − bk

∫
�

uk+γ −1 dx. (2.3)

We make use of integrating by parts and use the second equation in (1.1) to obtain

k(k − 1)χ

∫
�

uk−1∇u · ∇v dx = (k − 1)χ

∫
�

∇uk · ∇v dx

= −(k − 1)χ

∫
�

uk�v dx

= −(k − 1)χ

∫
�

uk(v − u)dx

≤ (k − 1)χ

∫
�

uk+1 dx.

Substituting this inequality into (2.3), we get:

d

dt

∫
�

ukdx + k(k − 1)

∫
�

uk−2 D(u)|∇u|2 dx

≤ (k − 1)χ

∫
�

uk+1 dx + ak

∫
�

uk−1 dx − bk

∫
�

uk+γ −1 dx. (2.4)

Because of γ > 2, we can use the Young inequality with exponents s = k+γ −1
k+1 and s′ = k+γ −1

γ −2 . Thus, we obtain∫
�

uk+1 dx ≤ b

χ

∫
�

uk+γ −1 dx + C1,

where C1 = ( b
χ s)− s′

s (s′)−1|�| is a positive constant. Hence, we can write

−bk

∫
uk+γ −1 dx ≤ −χk

∫
uk+1 dx + C2
� �
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with C2 = χkC1. Combining the last inequality with (2.4) gives

d

dt

∫
�

ukdx + k(k − 1)

∫
�

uk−2 D(u)|∇u|2 dx ≤ −χ

∫
�

uk+1 dx + ak

∫
�

uk−1 dx + C2. (2.5)

We now make use of Young’s inequality to the second term on the right-hand side of (2.5) to get

ak

∫
�

uk−1 dx ≤ χ

2

∫
�

uk+1 dx + C3,

where C3 = 2
k+1 (ak)

k+1
2

(
2(k−1)
χ(k+1)

) k−1
2 |�| is a positive constant. Substituting this inequality into (2.5) yields

d

dt

∫
�

ukdx + χ

2

∫
�

uk+1 dx ≤ C4 (2.6)

with C4 = C2 + C3. We now make use of Hölder’s inequality to obtain∫
�

uk+1 dx ≥
(∫

�

uk dx
) k+1

k |�|− 1
k .

This inequality along with (2.6) yields

d

dt

∫
�

ukdx + χ

2
|�|− 1

k

(∫
�

uk dx
) k+1

k ≤ C4.

By applying Lemma 2.2, the last inequality yields ‖u‖Lk(�) , which is bounded for all t ∈ (0, Tmax). This completes the 
proof. �

By using Lemma 2.4 and Alikakos’ iterative technique [1] (see also [13, Lemma A.1]), we can infer our main result.

Theorem 2.5. Let u0 ∈ Cα(�) and v0 ∈ W 1,r(�) be nonnegative functions for some α > 0 and r > n. Moreover, we assume that func-
tions D and g satisfy (1.2) and (1.3). Then problem (1.1) admits a unique global classical solution which is uniformly in-time-bounded.
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