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RESUME

Nous considérons le systéme quasi linéaire, parabolique-elliptique, de chimiotaxie

u=V-(DW)Vu — xuVv) +gu), xe,t>0,
0=Av—-v+u, xeQ, t>0,

avec des conditions au bord homogénes de Neumann, dans un domaine lisse, borné Q C
R", n > 1. Nous supposons que les fonctions D et

D(s) >0 pours >0, D(s) > CDST"’1 pour s >0,

g(0)>0, g(s)<a—bs’, s>0
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pour certaines constantes Cp >0,m>1,a>0,b>0et y > 2.

Nous démontrons que les solutions classiques du systéme ci-dessus sont uniformément
bornées en temps, sans restriction sur m et b. Ceci étend un résultat récent de Wang et
al. (2014) [16], qui borne les solutions pour y > 2 sous la condition b > b*, ot b* =0 si
mzZ—% etb*:%x sim<2—%.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we study the following initial boundary value problem:

u=V-(DWw)Vu—-Sw)Vv) + g(u), xeQ, t>0,

TVi=AV —V+u, xeQ, t>0,

ou v (1.1)
—=—=0, xed2, t>0,

av  Jdv

u(x,0) =ug, v(x,0)=vo, xeQ,

where Q C R",n > 1, is a bounded domain with smooth boundary, T € {0, 1} and v denotes the unit outward normal vector
to 9. We assume that S(u) = xu with x > 0 and the function D belongs to C2([0, 00)) and satisfies

D(s) >0 fors >0, D(s) > Cps™ ! fors>0 (1.2)
with some constants Cp > 0 and m > 1. We also assume that g is a smooth function that satisfies
£2(0)>0, g(s)<a—bsY fors>0 (1.3)

with constants a > 0,b > 0 and y > 2. Moreover, 1y € C*(Q) and vo € W1 (Q) for some « >0 and r > n.

Problems of this kind are used in mathematical biology to illustrate the mechanism of chemotaxis, that is, the movement
of cells towards the gradient of a substance called chemoattractant produced by the cells themselves. Here, u = u(x,t)
denotes the cell density and v = v(x,t) is the concentration of the chemical substance. While the functions D and S are
the diffusivity and chemotactic sensitivity, respectively, and g is the growth of u [7,4].

In the absence of a logistic source, when D =1, S(u) = xu with x >0 and t > 0, for the one-dimensional case, it
is shown that blow-up phenomena cannot occur [11]. For the two-dimensional case, it is proved that if [lugll 1) < 47",

4

then all solutions are global and bounded [10]. While for [[ugll;1(q) > R solutions become unbounded either in finite or

infinite time [5]. For higher-dimensional case, it is shown that for each ¢ > 5 and p > n, there exists €o > 0 such that if
luollae) < € and |lvollrr(@) < € for € < €, then the corresponding solutions are global and bounded [18]. Also, when € is

a ball for luoll 1 (e > 0, it is proved that there exist solutions blow up in finite time [22]. For the case D=1, 5(s) <c(s+1)4

for s > 0 with ¢ > 0 and 7 > 0, solutions are global and bounded provided that g < % and solutions blow up in finite time

or infinite time if S(s) > c(s + 1)4 for s > 0 with ¢ > 0 and q > % [6]. When  is a bounded convex domain in R",n > 2,

and t > 0, then solutions are uniformly-in-time bounded provided that % <c(s+1)¥ for s>0 with c >0 and o < % and
2

other additional conditions are fulfilled [13], whereas for the case where % >c(s+1)% for s> 0 with c>0 and o > £,
there exist solutions blow up either in finite or infinite time [19]. If the second equation is replaced with 0 = Av — M + u,
where M denotes the mean value of initial data ug, then under the conditions D(s) > cps™P and S(s) < css? for s > 1
with cp,cs > 0,p >0 and g € R, all solutions are global and uniformly bounded provided that p +q < % whereas for
0 < D(s) <cpsP and S(s) > css(s +1)?~! for s> 0 with cp,cs>0,p>0,g>0and p+q > % there exist radial solutions
that become unbounded in finite time [25].

In the presence of logistic source, when D =1, S(u) = yu with x > 0 and 7 =0, it is proved that problem (1.1) admits
at least one global very weak solution if y > 2 — % [17]. Also, in this case, it is shown that solutions are global and bounded

ify=2and b > ”;2)( [14]. The same result is true for T > 0 and y =2 provided that n <2 or n >3 and b > bg with
bo sufficiently large [12,20]. Also, in this case, for n > 3, it is proved that there exists at least one global weak solution for

arbitrary b > 0 [8]. Moreover, in this case when the ratio % is sufficiently large, it is shown that for any choice of suitably

regular nonnegative initial data, there exists a unique global classical solution (u, v) such that |lu(.,t) — %||Lx(g) — 0 and
lv(.,t) — %”Loo(g) — 0 as t — oo [23]. If the first equation is written as u; = —V - (uVv) 4+ au — bu? and 7 =0, then all
solutions are global in time for b > 1, and there exist solutions blow up in finite time if b < 1. These results have been
obtained by Winkler for the one-dimensional case [24] and Lankeit for higher-dimensional case [9]. When € is a ball in
R",n > 5, for the case D =1 and S(u) = yu with x > 0, if the second equation is replaced with 0 = Av+u— ﬁ fg u(x, t)ydx
and g satisfies in the condition g(s) > —bs? for s >0 with b >0 and y > 1 and other additional conditions, then radially
symmetric solutions blow up in finite time provided that 1 <y < %4— 2,11—_2 [21]. Also, for n > 5 in the case where D(s) <s™ P
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and S(s) =s? for s > 0 with p,q € R and g satisfies in the condition g(s) > a — bs¥ for s > 0 with a,b>0 and y > 1
and other additional conditions, blow-up phenomena occur in finite time if % —1<p<1,q>1 with 2p +3q <4 and

% [26]. Moreover, it is shown that under the conditions D(s) > (s + 1)"P and S(s) < sq for s > 0 with

p,q € R, all solutions are global and uniformly bounded provided that p 4+ q < % and y >lorp+q>+%, b> (i;ﬂ;nzx
and y >q+ 1 with ¢ > 1 [26]. In the case where 7 > 0, under the conditions D(s) > c15P, c2s9 < S(s) < 635‘7 for s>sp > 1
with ¢; > 0,i=1,2,3 and p,q R and g is smooth on [0, c0) satisfying g(s) < as — bs? for s >0 with a >0 and b > 0, it
is proved that the solutions are global and bounded provided that g < 1. This result is independent of the choice of p [2].
Wang et al. [16] studied problem (1.1) under the conditions (1.2) and (1.3) with S(u) = xu and 7 =0, where x is some
positive constant. Their results improve the recent result in [3], which asserts the boundedness of solutions with y =2

under the condition b > x (1 — W) or, equlvalently, m>1-— n(szb) In fact, Wang et al. proved that for y > 2 under

the condition b > b* with b*=0form>2— = and b* = (2(2'"#)( form<2— —, problem (1.1) has a unique nonnegative
classical solution, which is global and bounded They also proved that the same result is true provided that 1 <y <2 and
m>2-— % Besides, for the case y =2, under the conditions 0 <b < %X and m<2— % they proved that problem
(1.1) has at least one nonnegative global solution in the weak sense.

In the present paper, we will study problem (1.1) with T =0 under the conditions (1.2) and (1.3). We will prove that for
y > 2, problem (1.1) has a unique solution, which is uniformly in-time-bounded. We do not know, for the limit case y =2

under the conditions 0 < b < %X and m < 2 — £, whether solutions exist globally or blow up in ﬁmte time. So, the

global existence or the blowing up of solutions will remain an open question in the case where m < 2 — ﬁ and 1<y <2.
In the next section, we will prove the above result.

1<y<

2. Proof of main result

Here, we state the standard well-posedness and classical solvability result.

Lemma 2.1. Let functions D and g satisfy (1.2) and (1.3). Moreover, we assume that ug € C%($2) and vg € W17 (Q) are nonnegative
functions for some o > 0 and r > n. Then problem (1.1) has a unique non-negative classical solution that can be extended up to its
maximal existence time Tmax € (0, oo]. In addition, if Tmax < +00, then

[llm lu(., )o@ =

— Tmax

For details of the proof, we refer the reader to [25,16].
In order to prove the boundedness of the solution, we need the following lemma, which is given in [15].

Lemma 2.2. Let y be a positive absolutely continuous function on (0, oo) that satisfies

{ & +AP <B,
y(0) =

with some constants A > 0, B> 0 and p > 1. Then for t > 0, we have

y() < max [yo, (%)% }

Although the proof of the following lemma is given in [16], we present it here for completeness.

Lemma 2.3. Assume that the function g satisfies (1.3). Then for all t € (0, Tmax), there exists a constant C > 0 such that
lul, Ol =C. (2.1)

Proof. Integrating the first equation in (1.1) and using (1.3), we get

d
_pu?
@ udx_/ (u)dx</(a bu”) dx.

Q Q

Hence,

d
a/udx+b/u7’dx§a|9|. (2.2)
Q Q
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Making use of Holder’s inequality, we obtain

/uV dx > (/udx)ylml_”.

Q Q
Combining this inequality with (2.2) gives

d 1 Y

- -y

dt/de+b|Q| (/udx) <al|.
Q Q

Because of y > 2, we can apply Lemma 2.2 and obtain the desired result. O
Lemma 2.4. Assume that the function g satisfies (1.3). Then for all k > 1 and t € (0, Trhax), there exists a constant C > 0 such that

I )l < C-

Proof. At first, we compute

d k k—

— dx=k | u*lu;d

dt/ux </u ug dx
Q Q

=kf uky . (D(u)Vu — Xqu) dx—i—k/ u"_lg(u)dx
Q Q
< —k(k — 1)/uk_2D(u)|Vu|2dx+k(I<— 1)X/u’<—1Vu - Vvdx
Q Q
+ak/uk’1 dx—bk/u"“”1 dx. (2.3)
Q Q
We make use of integrating by parts and use the second equation in (1.1) to obtain

k(k—l)X/uk_]Vu-Vvdx:(k—l))([Vuk-Vvdx

Q Q
=—(k—l)x/ukAvdx
Q
:—(k—l)x/uk(v—u)dx
Q
< (k- 1)X[u"+1 dx.
Q

Substituting this inequality into (2.3), we get:

%/ukdx—l—k(k—1)/uk_2D(u)|Vu|2dx
Q Q

<k—T1x / uk+1 dx +ak/ uk=Tdx — bk/ uktr—Tdx. (2.4)
Q Q Q
Because of y > 2, we can use the Young inequality with exponents s = ktz;l and s’ = kJ;S]. Thus, we obtain

/.ul<+] de £/uk+]/7] dX+C1,
X

S’ . o . .
where C1 = (%s)*? (sH1 |€2| is a positive constant. Hence, we can write

—bk/uk“”’] dx < —Xk/uk“ dx+Cy
Q Q
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with Co = xkCy. Combining the last inequality with (2.4) gives

d
a / ukdx +kk—1) / u"_ZD(u)Wul2 dx < —yx / uktt dx—l—ak/ ukTdx + Cs. (2.5)
Q Q Q Q
We now make use of Young’s inequality to the second term on the right-hand side of (2.5) to get

ak/uk_] dx < %/u'“rl dx + C3,

Q Q
k;_l
) |2| is a positive constant. Substituting this inequality into (2.5) yields

k1 (2(k=1
where C3 = 25 (ak) 2 (x((’;c+1))
k+1

d
a ukdx + % f U dx < C4 (2.6)
Q Q

with C4 = Cy + C3. We now make use of Holder’s inequality to obtain

[uk“ dx > (/ukdx) |27 %,
Q Q
This inequality along with (2.6) yields
d k X 1 k &
— [ u"dx —Q_F( udx) < (4.
g [ Ziart( [ <cy
Q Q

By applying Lemma 2.2, the last inequality yields ||u|l;xq), Which is bounded for all t € (0, Tmax). This completes the
proof. O

By using Lemma 2.4 and Alikakos’ iterative technique [1] (see also [13, Lemma A.1]), we can infer our main result.

Theorem 2.5. Let ug € C%(2) and vo € W -7 (2) be nonnegative functions for some o > 0 and r > n. Moreover, we assume that func-
tions D and g satisfy (1.2) and (1.3). Then problem (1.1) admits a unique global classical solution which is uniformly in-time-bounded.
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