
C. R. Acad. Sci. Paris, Ser. I 353 (2015) 919–923
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations/Mathematical physics

Scale-free uncertainty principles and Wegner estimates for 

random breather potentials ✩

Principes d’incertitude indépendants de l’échelle et estimées de Wegner 

pour des potentiels random breather
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We present new scale-free quantitative unique continuation principles for Schrödinger 
operators. They apply to linear combinations of eigenfunctions corresponding to eigenvalues 
below a prescribed energy, and can be formulated as an uncertainty principle for spectral 
projectors. This extends recent results of Rojas-Molina & Veselić [15], and Klein [10]. 
We apply the scale-free unique continuation principle to obtain a Wegner estimate for 
a random Schrödinger operator of breather type. It holds for arbitrarily high energies. 
Schrödinger operators with random breather potentials have a non-linear dependence on 
random variables. We explain the challenges arising from this non-linear dependence.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons de nouveaux principes de continuation unique indépendants de l’échelle 
pour des opérateurs de Schrödinger. Nos résultats concernent des combinaisons linéaires de 
fonctions propres correspondant aux valeurs propres au-dessous d’une énergie prescrite, 
et ils peuvent être formulés en termes de principes d’incertitude pour des projecteurs 
spectraux. Ceci généralise des résultats récents de Rojas-Molina & Veselić [15] et de Klein 
[10]. Nous utilisons des estimations de continuation unique indépendantes de l’échelle 
et obtenons ainsi une estimation de Wegner pour un opérateur de Schrödinger aléatoire 
de type breather. De tels opérateurs dépendent des variables aléatoires d’une façon non 
linéaire, et nous expliquons les difficultés liées à cette non-linéarité.
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1. Introduction

A Wegner estimate is an upper bound on the expected number of eigenvalues in a prescribed energy interval of a 
finite-box Schrödinger operator. The expectation here refers to the potential, which is random. The most studied example 
in this situation is the so-called alloy-type potential, sometimes also called continuum Anderson model, cf. Remark 2.9
below. A particular feature of this model is that randomness enters the model via a countable number of random variables, 
and these random variables influence the potential in a linear way. In the random breather model we study here, this 
dependence is no longer linear, but becomes non-linear. What remains is the monotone dependence of the potential on the 
random variables. The topic of the present note is to explain how to effectively use this monotonicity in order to derive a 
Wegner estimate. This only works if it is possible to cast the monotonicity in a quantitative form.

In order to achieve this, we use a scale-free uncertainty relation or unique continuation principle for spectral projectors 
of Schrödinger operators, presented in Theorem 2.1. A proof of Theorem 2.1 will be given in a forthcoming paper [14]. It 
answers positively a question raised in [15]. A partial answer (for small energy intervals) had been given shortly after in 
[10]. Previously, there has been in the literature on random operators a plethora of related results, applicable to specialised 
situations, see, e.g., [15] for a discussion. However, the lack of a result like Theorem 2.1 was a bottleneck for further progress.

Estimates as in Theorem 2.1 have been developed and applied in a different area of mathematics, namely control theory 
for partial differential equations, starting with the seminal paper [12]. In this context, they are called spectral inequalities. In 
fact, our proof of Theorem 2.1 highlights how ideas from the theory of random Schrödinger operators and control theory 
complement each other in an efficient way.

2. Results

Let d ∈ N
∗ = {1, 2, 3, . . .}, δ > 0, L ∈ N

∗ and V : Rd → R measurable and bounded. Denote by �L = (−L/2, L/2)d a cube 
in Rd , by

SL,δ = �L ∩
( ⋃

j∈Zd

B(z j, δ)
)

the union of δ-balls centered at the points z j and contained in the corresponding unit cubes �1 + j, and by H L one of the 
self-adjoint restrictions of the Schrödinger operator −� + V to �L with either Dirichlet, Neumann, or periodic boundary 
conditions. We formulate a scale-free quantitative unique continuation property for the operator H L .

Theorem 2.1. There is K0 = K0(d) such that for all δ ∈ (0, 1/2), all E ∈ R, all measurable and bounded V : Rd → R, all L ∈ N
∗ , all 

sequences (z j) j∈Zd ⊂ R
d such that ∀ j ∈ Z

d : B(z j, δ) ⊂ �1 + j and all linear combinations of eigenfunctions

ψ =
∑

n∈N∗:En≤E

αnψn

(where ψn ∈ W 2,2(�L; R) form an orthonormal basis and satisfy H Lψk = Enψn and (αn)n∈N∗ is a sequence in C), we have∫
S L,δ

|ψ |2 ≥ Csfuc

∫
�L

|ψ |2, where Csfuc = δK0
(
1+‖V ‖2/3∞ +|E|1/2)

.

The constant Csfuc is called an observability constant or a scale-free unique continuation constant. We can reformulate 
this statement as an uncertainty principle. For this purpose, denote by χI (H L) the spectral projector of H L onto an interval 
I and by W L,δ the characteristic function of the set SL,δ .

Corollary. Under the same assumptions as in the above theorem we have

χ(−∞,E](H L) W L,δ χ(−∞,E](H L) ≥ δK0(1+‖V ‖2/3∞ +|E|1/2)χ(−∞,E](H L). (1)

Inequality (1) is to be understood in the sense of quadratic forms.

Remark 2.2. For our purposes, the explicit quantitative dependence of the constant Csfuc = Csfuc(δ, ‖V ‖∞, E) is essential. 
In particular, Csfuc does not depend on the scale L ∈ N

∗ . It depends on the radius δ in a polynomial way, and on ‖V ‖∞
and |E| in an exponential way. Note also that the constant is unaffected by a translation of a ball B(z j, δ) as long as 
it stays in the corresponding unit cube. For any K V ≥ 0, the bound is uniform in the ensemble of potentials {V : Rd →
[−K V , K V ] measurable}. This is important, because we want to apply the theorem to random Schrödinger operators. There 
the constant must not depend on the particular configuration of randomness. Since the operator is lower bounded, we have 
χ(−∞,E](H L) = χ[−‖V ‖∞,E](H L).
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To put this into context let us cite similar results from [12,11,2]. First we cite a special case of [12, Corollary 2] and [11, 
Theorem 5.4].

Theorem 2.3. (See [12].) Let � ⊂ R
d be bounded, open and connected, T > 0 and ω ⊂ � × [0, T ] open and non-empty with 

ω ⊂ (0, T ) × �̊. Then there is C = C(T , �, ω) > 0 such that

∀ψ ∈ L2(�) : ‖eT �ψ‖2
L2(�)

≤ C
�
ω

|et�ψ |2.

While this result applies to parabolic equations, the next one is an adaptation to the elliptic setting.

Theorem 2.4. (See [11].) Let � ⊂ R
d be bounded, open and connected, and ω ⊂ � open and non-empty with ω �= �. Then there is 

K = K (ω, �) > 0 such that for all sequences (α j) j∈N∗ ⊂ C and all E > 0 we have

∥∥∥ ∑
n∈N∗:En≤E

αnψn

∥∥∥2

L2(�)
≤ K eK

√
E
∥∥∥ ∑

n∈N∗:En≤E

αnψn

∥∥∥2

L2(ω)
.

Here, En, n ∈ N
∗ , denote the ordered eigenvalues of −� on � with Dirichlet boundary conditions with corresponding eigenfunc-

tions ψn, n ∈N
∗ .

In contrast to Theorem 2.1, the dependence of the observability constant in Theorems 2.3 and 2.4 on the geometry of �
and ω is not known. Next we cite [2, Theorem 3.4], where a quantitative dependence on the observability constant similar 
to Theorem 2.1 is obtained. It applies to approximate solutions to the stationary Schrödinger equation. A common feature of 
Theorems 2.5 and 2.1 is the appearance of the term K 2/3 and ‖V ‖2/3∞ , respectively in the exponent. This is due to the use 
of Carleman estimates.

Theorem 2.5. (See [2].) Let � ⊂ R
d be an open subset of Rd and consider a real measurable function V on � with ‖V ‖∞ ≤ K < ∞. 

Let ψ ∈ W 2,2(�) be real-valued and ξ ∈ L2(�) be defined by −�ψ + V ψ = ξ almost everywhere on �. Let � ⊂ � be a bounded 
and measurable set where ‖ψ‖L2(�) > 0. Set

Q(x,�) := sup
y∈�

|y − x| for x ∈ �.

Consider x0 ∈ � \ � such that Q =Q(x0, �) ≥ 1 and B(x0, 6Q + 2) ⊂ �. Then given 0 < δ ≤ min{dist(x0, �), 1/24}, we have

(
δ

Q

)m(1+K 2/3)(Q4/3+log
‖ψ‖

L2(�)
‖ψ‖

L2(�)
)

‖ψ‖2
L2(�)

≤ ‖ψ‖2
L2(B(x0,δ))

+ δ2‖ξ‖2
L2(�)

,

where m > 0 is a constant depending only on d.

Now we discuss an application of Theorem 2.1 to random breather models, a class of random Schrödinger operators where 
the randomness enters the potential in a non-linear way. Consider a sequence ω = (ω j) j∈Zd of (almost surely) positive, 
bounded, independent and identically distributed random variables with distribution measure μ, as well as a compactly 
supported, measurable function u: Rd → R. The random breather potential is the function

Vω(x) :=
∑
j∈Zd

u
( x − j

ω j

)
,

while the family (Hω)ω with Hω := −� + Vω is called random breather model.
Random breather potentials have been introduced in [4], and studied in [5] and [9]. However, all these papers assumed 

unnatural regularity conditions, excluding the most basic and standard type of single site potential, where u equals the 
characteristic function of a ball or a cube. This was not a coincidence but a consequence of the linearization method used 
in the proofs. Our proof does not rely on linearization, but merely on monotonicity. While we have results for a broad class 
of random breather models, we restrict ourselves in this note for the purpose of clarity to the two mentioned cases, i.e.

u = χB1 , thus Vω(x) =
∑
j∈Zd

χBω j
(x − j), (2a)

u = χ�2 , thus Vω(x) =
∑

d

χ�2ω j
(x − j). (2b)
j∈Z
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In fact, since our proofs are based on the analysis of level sets of random potentials, they work also for other types of 
stochastic fields with non-linear, monotone randomness, not just for random breather potentials. Specifically, the function 
ω j �→ 〈φ, Vωφ〉 merely needs to be polynomially increasing.

Note also that the random potential is uniformly bounded and non-negative, and thus the operator Hω is self-adjoint.

Theorem 2.6 (Wegner estimate for the random breather model). Let Hω be as in (2). Assume that μ has a bounded density ν supported 
in [ω−, ω+] with 0 ≤ ω− < ω+ < 1/2. Fix E0 ∈ R. Then there are C = C(d, E0) and εmax = εmax(d, E0, ω+) ∈ (0, ∞) such that for 
all ε ∈ (0, εmax] and E ≥ 0 with [E − ε, E + ε] ⊂ (−∞, E0], we have

E
[
Tr

[
χ[E−ε,E+ε](Hω,L)

]] ≤ C‖ν‖∞ε[K0(2+|E0+1|1/2)]−1 |lnε|d Ld.

The constant εmax can be chosen as

εmax = 1

4

(
1/2 − ω+

2

)K0(2+|E0+1|1/2)

,

where K0 is the constant from Theorem 2.1.

Here E denotes the expectation w.r.t. the random variables ω j, j ∈ Z
d , and Hω,L the restriction of Hω to the cube �L

with Dirichlet boundary conditions. Theorem 2.6 implies local Hölder continuity of the integrated density of states (IDS) 
and is sufficient for the multiscale-analysis proof of spectral localization. This will be elaborated in detail elsewhere.

Remark 2.7. The proof of Theorem 2.1 relies on Carleman estimates with and without boundary term, see, e.g., [12] and 
[6,1], on interpolation inequalities and an auxiliary Cauchy problem in d + 1 dimensions as discussed in [12,13,8], and 
finally on geometric covering arguments developed in the theory of random Schrödinger operators, see, e.g., [15].

The proof of Theorem 2.6 relies on the method outlined in [7] and [15]. It can be traced back to Wegner’s original work 
[17]. Additional steps are necessary, since the breather model has a non-linear dependence on the random variables, unlike 
the well-studied Anderson model. We also do not have the differentiability of the map ω j �→ 〈φ, Hωφ〉 in the usual sense. 
Thus, for instance the proofs of [3,10] do not apply. However, the strategy of [7,15] is quite versatile and can be adapted 
to our setting. The key idea is not to rely on differentiability of quadratic forms but rather directly on the Courant–Hilbert 
variational principle for eigenvalues.

In particular, the following lemma is crucial for the proof of Theorem 2.6. It relies on the quantitative version of the un-
certainty principle from Theorem 2.1. Denote the eigenvalues of Hω,L by {En(ω)}n∈N∗ , enumerated increasingly and counting 
multiplicities. For δ ∈R, we define ω + δ by (ω + δ) j := ω j + δ for all j ∈ Z

d .

Lemma 2.8. Let Hω,L be as above and assume that ω ∈ [ω−, ω+]Zd
, δ ≤ 1/2 − ω+ . Then, for all n ∈ N

∗ with En(ω) ∈ (−∞, E0] we 
have

En(ω + δ) ≥ En(ω) +
(

δ

2

)[
K0

(
2+|E0+1|1/2)]

,

where K0 is the constant from Theorem 2.1.

Thus, we obtain a lifting estimate on the eigenvalues, which is independent of the length scale. Details of the proof of 
Theorem 2.6 can be found in [16].

Remark 2.9 (Challenges due to non-linearity). The challenges are best understood by comparing the breather model with the 
alloy-type potential Vω(x) = ∑

j∈Zd ω ju(x − j) (for simplicity, consider u = χB(r)). The latter depends in a linear way on 
the random coupling constants constituting the configuration ω = (ω j) j . In particular, the derivatives of eigenvalues En(ω)

(of finite box restrictions on −� + Vω) w.r.t. each ω j are easily calculated via the Hellman–Feynman formula. In contrast, 
for the breather model, the derivatives ∂

∂ω j
En(ω) are only defined in a distributional sense. Thus, one is led to implement 

eigenvalue perturbation theory using increments Vω+δ − Vω , with positive δ. Note that in the case of the alloy-type model, 
for any fixed δ, the increment Vω+δ − Vω is independent of the configuration ω and a Zd-periodic function. Therefore, it 
is not needed to know the explicit dependence of Csfuc on δ. For the breather model, this is not the case. In particular, 
Vω+δ − Vω is a non-periodic function and its support depends both on δ and ω. Specifically, it is a union of annuli of 
width δ and ω-dependent radii, cf. Fig. 1. Technically, one has to estimate the mass of the square of an eigenfunction in this 
support set as a function of ω and δ. For the application of Theorem 2.1, one has to chose balls B(z j, δ/2) lying inside the 
annuli, see Fig. 1. To obtain Hölder continuity of the IDS one has to control the behaviour of Csfuc as δ ↘ 0.
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Fig. 1. Illustration of the support of the increments Vω+δ − Vω (left) and the choice of the balls B(z j, δ/2) (right). (Illustration des supports des incréments 
Vω+δ − Vω et du choix des boules B(z j, δ/2).)
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