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RESUME

Dans [1], les auteurs ont fourni un exemple de processus strictement stationnaire
B-mélangeant vérifiant le théoréme limite central, mais pas le principe d'invariance faible.
Pour tout q < 1/2, le processus peut étre construit avec des taux de mélange de I'ordre de
N~9, L'objectif de cette note est de montrer que la méme construction peut fournir des
taux de mélange de I'ordre de N~9 pour un q <1 donné.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations and main result

We recall some notations in order to make this note more self-contained. Let (2, F, ) be a probability space. If
T: Q — Q is one-to-one, bi-measurable and measure preserving (in sense that wu(T~1(A)) = u(A) for all A € F), then
the sequence ( fo Tk)kEZ is strictly stationary for any measurable f: €2 — R. Conversely, each strictly stationary sequence

can be represented in this way.
n—1

For a zero mean square integrable f: Q — R, we define S,(f) := Zf o T, a,lz(f) = E(S,(f)?) and Sp(f.t) =
j=0
Sie)(f)+(t —[nt])f o T where |x] is the greatest integer, which is less than or equal to x.
Define the B-mixing coefficients by

]
1
B(AB):=2supy 3 [1u(Ai N Bj) — w(AD(B))] (1)

i=1 j=1
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where the supremum is taken over the finite partitions {A;,1<i< I} and {Bj,] <j< ]} of Q of elements of A (respec-
tively of B). They were introduced by Volkonskii and Rozanov [4].

For a strictly stationary sequence (Xj)rcz and n > 0, we define Bx(n) = g(n) = ,B(}'Eoo, F°), where F/ is the o -algebra
generated by Xj with u <k < v (if u = —o0 or v = 00, the corresponding inequality is strict).

Theorem 1. Let § > 0. There exists a strictly stationary real valued process Y = (Yy)i>o = ( fo Tk) satisfying the following

conditions:

k>0

the central limit theorem with normalization /n takes place;
the weak invariance principle with normalization /n does not hold;

)
)
) on(f)? < N;
)
)

for some positive C and each integer N, By (N) < C - N~1+;

We refer the reader to Remark 2 of [1] for a comparison with existing results about the weak invariance principle for
strictly stationary mixing sequences.

2. Proof

We recall the construction given in [1]. Let us consider an increasing sequence of positive integers (ng)>1 such that
1
np =2 and Z—<oo, (2)

and for each integer k > 1, let A, , A;" be disjoint measurable sets such that j(A;) = 1/2n}) = u(A)).
Let the random variables e, be defined by

1 ifweA],
en(w):=1-1 ifweA,, 3)
0 otherwise.

We can choose the dynamical system (2, F, i, T) and the sets Af, A, in such a way that the family (e, o Ti),<>1,,~ez is
independent. We define Ay := Al‘f UA, and

ng—1 ng—1 +o0

hy == Z Ufiek —U ™ Z Uiiek, h:.= hy. (4)
i=0 i=0 k=1

Let i(N) denote the unique integer such that n;yy <N < nj(ny+1.
We shall show the following intermediate result.

Proposition 1. Assume that the sequence (ny)y>1 satisfies (2) and the following condition:

there exists n) > 0 such that for each k, 11 > n,1<+'7. (5)

Then:

a") n~125,(h) — 0 in probability;

b’) the process (N~1/2S% (h, -))n>1 is not tight in C[0, 1];

) on(? <N;

d’) for some positive C, N - By (N) < Cniny+1/Ni(n);

e’) helP forany p > 0.

Let us consider a bounded mean-zero function m of unit variance such that the sequence (mo Ti)i>0 is independent and
independent of the sequence (h o T"),;o. We define f:=m+ h.

Corollary 2. Assume the sequence (1)1 satisfies (5). Then the sequence (f o T‘),;O satisfiesa), b), c), d’) and e).
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For k > 1 and N > ny, the N partial sum of hj; admits the expression

ng ng—1
Sn(h) =y jUItN=2Mey % " (my — jUItN ey
j=1 j=1
ny n—1
=) jUITe = Y (e — HUT ke (6)
j=1 Jj=1

Let us prove Proposition 1. Item a’) follows from the fact that h is a coboundary (see the explanation before Section 2.2
of [1]).
For b’), we recall the following lemma (Lemma 10, [1]).

Lemma 3. There exists Ng such that

M{ max _|Sy(hy)l >nk] >1/4 (7)
2m <N<n?

whenever n, > No.

The following proposition improves Lemma 11 of [1] since the condition on the sequence (1),>1 (namely, (5)) is weaker
than both conditions (11) and (12) of [1].

Proposition 4. Assume that the sequence (ny);>1 satisfies (5). Then we have for k large enough

u{l max |5~<h>|>1/2} >1/8, (8)

Mk 2m <N<n?

Proof. Let us fix an integer k. Let us define the events

1 1

A:=1— max [Sy(h)|==¢, 9)
Mg 2n SN2 2
1

B:={— max |Sy[> hj]l>1} and (10)
Mk 2n <N<n? ik
1 1

C:={— max [Sy| > hj|{<5¢. (11)
Mk 2m <N} i<t 2

Since the family {e,< oTi k>1,ie Z} is independent, the events B and C are independent. Notice that BN C C A, hence

1 1
nA)y=puy— max [Sy(h)| == = puB)u(C).
Mk 20, KN<n? 2

2
In order to give a lower bound for @ (B), we define Ej := Uf\}‘:znk Uj>k+1 {SN(hj) #* 0}; then

W(B) = w(B N Ep) (12)
1
=u({— max _|Sn()|>1}NE; (13)
Mk 2n <N<n?
1
2#({— max _|Sy (hl<)|>1}) — (Eg). (14)
Mk 2m, KN}

Let us give an estimate of the probability of E. As noted in [1] (proof of Lemma 11 therein), the inclusion
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i i
U {snamp=ofc |J 1774 (15)
N=2ny i:—an+l

takes place for j > k, hence

2
L

2
n; +2n;
w| U {svmp#o} | < 2=, (16)
N=2n;, mj
and it follows that
+00
2Tl]
m(Eg) < ==, (17)
. nj
Jj=k+1
By (5), we have nj < nl/(Hr’) for j > k, hence by (17),
+oo 5
T+n
wEY<2 Y on (18)
Jj=k+1

As condition (5) implies that n > 2¥ for k large enough, we conclude that the following inequality holds for k large enough:

400 o
WEY <2 ) 270 (19)
j=k+1

Thus, by Lemma 3 and (19), we have for k large enough

1 1
M{— max |SN(h)| }

Mk 2n, KNl

1 X i 1 1
> ‘—1—222]1#1 1—ui{— maXZSN Zhj >3 (20)
j=k+1 M 2SN < j<k—1
Defining ¢y := {T‘]_k MaXa,, <N<n? SN (ngk—l hj)‘ > %} it is enough to prove that
lim ¢, =0. (21)
k— o0
Using (6) (accounting N > 2ny > n; for j <k), we get the inequalities
CI<§ZM 1 max _|Sy(hj)| > ! (22)
; M 2m, N2 2(0k—1)
k—1 nj n k—1 nj—1 e
< iUlej| > =< iUlej| > = 23
3 DI I e @
j=1 i=1 j=1 i=1
nj
k
+ o max UV iUle; +
Z 2mKNEn? 121: ! 8k
nj—1 n
k
+Y 'l max UV iUlej| > =
Z: 2 <N<n? Z N\ sk
k—1 nj A e k—1 nj—1 e
Z“{ '->§}+Z“ ZteJ>— ) (24)
j=1 i=1 j=1
Notice that for each j<k—1,
nj—l n le
- k
iUlei| > — } < + [nU”e > — } 25
” ; 717 8k “{i_] 16k} wmUmeil > 15 (23)
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Condition (5) implies the inequality 16k - nx_; < ny for k large enough, hence keeping in mind that U"e; is bounded by 1,
inequality (25) becomes for such k’s:

lefl le
_— ng _— N
I ;:Ue]>@ <M{§1U61>16k}. (26)
Combining (24) with (26), we obtain
k—1 nj n,
¢ < 2n2 iUle:| > — 27
k k ZM [ il = 16k} (27)
j=1 i=1
p

nj )
—
Eer]

i=1

2
< 2ng

16k)P k—1
(n;) S E , (28)

k j=1

where p > 2 + 1/7n. By Rosenthal’s inequality (see [3], Theorem 1), we have

nj p nj nj p/2
> <6 L rele+ (3 mi) @9
i=1 i=1 i=1

E

< Cpmf P ) (30)
<20t (31)

as p > 2. Therefore, for some constant K depending only on p,

k—1 p—1

n
ck <K-n. PP Zn?il <K -kPH k—__lz (32)
— n?
j=1 k
and by (5),
a <K .kp+ln’1<9_—]1—(P—2)(1+77)‘ (33)

Sincep—1—(p—-2)A+n=1—-(p—2)n<0and ng_1 > 2k=1 for each k > 2, we get:
ok <K - kPH120=(=2mk=1) (34)

This concludes the proof of Proposition 4 hence that of b’). O

For ¢’), we follow the computation in the proof of Proposition 13 of [1], using the fact that sup Z’]‘;} nj/ny is finite.
We now provide a bound for the mixing rates. Corollary 6 of [1] states the following.

Proposition 5. For each integer k, we have

4
PN Y —. (35)

jan >N

Then d’) follows from the bounds

4 4 4 nj
BONS—+ 3 —=——|1+) | (36)
i(N) k>IN k+1 i(N) i>1 j+1

In Proposition 14 of [1], it was proved that for each g > 2, there exists a constant C; such that for each k > 1,

lhkllg < an;”q. Condition (5) implies that ny > 2¥ for k large enough, hence e’) is satisfied.
This concludes the proof of Proposition 1 and that of Corollary 2.

Proof of Theorem 1. Let 1 be an arbitrary positive real and let

np = |20+ (37)
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The sequence (ny)r>1 satisfies (5) (and (2)). Consequently, if h is defined by (4), then the sequence of partial sums
(Sn(M)n>1 satisfies the conclusions of Proposition 1. It follows that the sequence (f o Tk)@o satisfies the conclusions of

Corollary 2. Now, by Proposition 11 of [2], we have B(N) < CN~V/(+M for some universal positive constant C, which
completes the proof of Theorem 1. O
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