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We generalize the decomposition of Uq(g) introduced by A. Joseph in [5] and link it, for 
g semisimple, to the celebrated computation of central elements due to V. Drinfeld [2]. 
In that case, we construct a natural basis in the center of Uq(g) whose elements behave 
as Schur polynomials and thus explicitly identify the center with the ring of symmetric 
functions.
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r é s u m é

Nous généralisons la décomposition de Uq(g) introduite par A. Joseph [5] et la relions, 
pour g semi-simple, au calcul bien connu d’éléments centraux dû à V. Drinfeld [2]. Dans 
ce cas, nous construisons une base naturelle dans le centre de Uq(g), dont les éléments 
se conduisent comme des polynômes de Schur, et nous identifions donc explicitement le 
centre avec l’anneau de fonctions symétriques.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

1.1. Let H be an associative algebra with unity over a field k and let C be a full abelian subcategory closed under 
submodules of the category H − Mod of left H-modules. Suppose that we have a “finite duality” functor � : C → Mod−H
with V � ⊆ V ∗ = Homk(V , k) (with equality if and only if V is finite dimensional) with its natural right H-module structure, 
such that the restriction of the evaluation pairing 〈·, ·〉V : V ⊗ V ∗ → k to V ⊗ V � is non-degenerate for all objects V in C
(see Section 2.1 for details). Following [4], we define βV : V ⊗D(V ) V � → H∗ where D(V ) = EndH V � = (EndH V )op by

βV (v ⊗ f )(h) = 〈h � v, f 〉V = 〈v, f 	 h〉V , v ∈ V , f ∈ V �, h ∈ H,

where � (respectively, 	) denotes the left (respectively, right) H-action. It is easy to see that βV is well-defined. Set 
H∗

V = ImβV . Recall that V ⊗ V � and H∗ are naturally H-bimodules. The following is essentially proved in [4, §3.1] and [3, 
Corollary 1.16].
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Proposition 1.1.

(a) For all V ∈ C , βV is a homomorphism of H-bimodules and H∗
V depends only on the isomorphism class of V . Moreover, if V , V ′ ∈ C

are simple and H∗
V = H∗

V ′ then V ∼= V ′;
(b) H∗

V ⊕V ′ = H∗
V + H∗

V ′ for all V , V ′ ∈ C . In particular, H∗
V ⊕n = H∗

V for all n ∈N.
(c) If V ⊗D(V ) V � is simple as an H-bimodule then βV is injective.
(d) If V is simple finite dimensional, then V ⊗D(V ) V � is simple as an H-bimodule and hence βV is injective.

It is natural to call H∗
V a generalized Peter–Weyl component. Denote H∗

C = ∑
[V ]∈Iso C H∗

V and H∗
C = ⊕

[V ]∈Iso◦ C H∗
V , where 

IsoC (respectively, Iso◦ C ) is the set of isomorphism classes of objects (respectively, simple objects) in C . By definition, 
there is a natural homomorphism of H-bimodules H∗

C → H∗
C . Clearly, under the assumptions of Proposition 1.1(c), it is 

injective. Note that H∗
C = ∑

[V ]∈A H∗
V for any subset A of Iso C , which generates it as an additive monoid. The following 

refinement of [4, Theorem 3.10] establishes the generalized Peter–Weyl decomposition.

Theorem 1.2. Suppose that all objects in C have finite length. Then

(a) if H∗
C = H∗

C then C is semisimple;
(b) if C is semisimple and V ⊗D(V ) V � is simple for every V ∈ C simple then H∗

C = H∗
C .

1.2. Henceforth we denote by C fin the full subcategory of C consisting of all finite-dimensional objects. Clearly V ⊗ V � , 
V ∈ C fin, is a unital algebra with unity 1V ; set zV := βV (1V ) ∈ H∗

V . For example, if H = kG for a finite group G , then for 
any finite-dimensional H-module V , we have zV (g) = trV (g), g ∈ G , where trV denotes the trace of a linear endomorphism 
of V .

Given an H-bimodule B , define the subspace B H of H-invariants in B by B H = {b ∈ B : h � b = b 	 h, ∀ h ∈ H} (B H is 
sometimes referred to as the center of B). Clearly, zV ∈ (H∗

V )H , zV (1H ) = dimk V �= 0 and (H∗
V )H = kzV if EndH V = k idV . 

Set ZC = ∑
[V ]∈Iso C ZzV . Given V ∈ C , denote |V | its image in the Grothendieck group K0(C ) of C . The following result 

contrasts sharply with Proposition 1.1 and Theorem 1.2 for non-semisimple C .

Theorem 1.3. Suppose that C = C fin . Then the map K0(C ) → ZC given by |V | �→ zV , [V ] ∈ IsoC is an isomorphism of abelian 
groups.

1.3. To introduce a multiplication on ZC ⊂ (H∗
C )H ⊂ H∗

C , we assume henceforth that H = (H, m, �, ε) is a bialgebra 
and that C is a tensor subcategory of H − Mod. Note that H∗ is an algebra in a natural way. It is easy to see (Lemma 2.4) 
that (H∗)H is a subalgebra of H∗ . We also assume that there is a natural isomorphism (V ⊗ V ′)� ∼= V ′� ⊗ V � in mod−H for 
all V , V ′ ∈ C .

Theorem 1.4.

(a) H∗
V · H∗

V ′ = H∗
V ⊗V ′ for all V , V ′ ∈ C . In particular, H∗

C is a subalgebra of H∗;

(b) zV · zV ′ = zV ⊗V ′ for all V , V ′ ∈ C fin . In particular, if C = C fin then ZC is a subring of (H∗
C )H and the map K0(C ) →ZC from 

Theorem 1.3 is an isomorphism of rings.

Thus, it is natural to regard ZC as the character ring of C .

1.4. It turns out that we can transfer the above structures from H∗
C to H if H = (H, m, �, ε, S) is a Hopf algebra. For an 

H-bimodule B , define left H-actions ad and � on B via (ad h)(b) = h(1) � b 	 S(h(2)) and h � b = S2(h(2)) � b 	 S(h(1)), h ∈ H , 
b ∈ B , where �(b) = b(1) ⊗ b(2) in Sweedler’s notation.

Fix a categorical completion H⊗̂H of H ⊗ H such that ( f ⊗ 1)(H⊗̂H) ⊂ H for all f ∈ H∗
C . Equivalently, �P : H∗

C → H , 
f �→ ( f ⊗ 1)(P ) is a well-defined linear map. Denote A (H) the set of all P ∈ H⊗̂H such that P · (S2 ⊗ 1)(�(h)) = �(h) · P
for all h ∈ H . Clearly, A (H) is a subalgebra of H⊗̂H . Elements of A (H) are analogous to M-matrices (see, e.g., [12]). For 
V ∈ C fin, set cV = cV ,P := �P (zV ) ∈ �P ((H∗

C )H ). Let Z(H) be the center of H .

Theorem 1.5. Let P ∈ A (H). Then �P : H∗
C → H is a homomorphism of left H-modules, where H acts on H∗

C and H via � and ad, 
respectively. Moreover, �P ((H∗

C )H ) ⊂ Z(H) and the assignment |V | �→ cV , [V ] ∈ IsoC fin defines a homomorphism of abelian groups 
chC : K0(C fin) → Z(H).

Surprisingly, �P is often close to be an algebra homomorphism. To make this more precise, we generalize the notion 
of an algebra homomorphism as follows. Let A, B be k-algebras and let F be a collection of subspaces in A. We say 
that a k-linear map � : A → B is an F -homomorphism if �(U ) · �(U ′) ⊂ �(U · U ′) for all U , U ′ ∈ F . We say that F is 
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multiplicative if U · U ′ ∈ F for all U , U ′ ∈ F . It is easy to see that |F | := ∑
U∈F U is a subalgebra of A and �(|F |) is a 

subalgebra of B for any multiplicative family F .
In what follows, we denote by FC the collection of all subspaces of H∗ of the form H∗

V where V ∈ C . By Theorem 1.4, 
FC is multiplicative.

Example 1.6. Let H = kG , where G is a finite group and C is the category of its finite-dimensional representations. Then 
the assignment δg �→ g−1 where δg(h) = δg,h , g, h ∈ G defines an isomorphism of H-bimodules � : H∗ → H . Let FG =
{H∗

V : [V ] ∈ Iso◦ C , HomG(V , V ⊗ V ) �= 0} ⊂ FC . If |G| ∈ k× , then � is an FG -homomorphism since �(H∗
V ) · �(H∗

V ′ ) = 0
if [V ] �= [V ′] ∈ Iso◦ C and �(H∗

V ) · �(H∗
V ) = �(H∗

V ).

Denote by M (H) the set of all P ∈ H⊗̂H such that �P is an FC -homomorphism and by M0(H) the set of all 
P ∈ M (H) such that �P restricts to a homomorphism of algebras (H∗

C )H → Z(H). We abbreviate H V ,P := �P (H∗
V ) and 

HC ,P := �P (H∗
C ) = ∑

[V ]∈Iso C H V ,P . Since FC is multiplicative, HC ,P is a subalgebra of H for P ∈ M (H). The following 
is immediate.

Proposition 1.7. Suppose that P ∈ A (H) ∩ M (H) and �P is injective. Then:

(a) if V ⊗D(V ) V � is a simple H-bimodule then it is isomorphic to H V ,P as a left H-module;
(b) HC ,P = ⊕

[V ]∈Iso◦ C H V ,P if C is semisimple and V ⊗D(V ) V � is simple as an H-bimodule for each V ∈ C simple;

(c) if P ∈ M0(H) then chC : K0(C fin) → Z(H) is injective.

The following theorem provides a sufficiently large subclass of A (H) ∩ M (H) and A (H) ∩ M0(H).

Theorem 1.8. Suppose that P ∈ A (H) such that (� ⊗ 1)(P ) = (m ⊗ m ⊗ 1)((T ⊗ 1)P15 P35) for some T ∈ H⊗̂H⊗̂H⊗̂H. Then 
P ∈ M (H). Moreover, if (mop ⊗ mop)(T ) = 1 ⊗ 1 then P ∈ M0(H).

It should be noted that M (H) and M0(H) are not exhausted by the above condition.

Example 1.9. Let G = S3. Suppose that chark �= 2, 3 and let Pλ,μ = 1
6

∑
σ∈S3

1 ⊗ σ + 1
36

[
s1 ⊗ (1 + (2μ − 1)s1 − (μ + 1)(s2 +

s1s2s1) + s1s2 + s2s1)
]

S3
+ 1

18

[
s1s2 ⊗ (2 + (λ − 1)s1s2 − (λ + 1)s2s1)

]
S3

, where λ, μ ∈ k, si = (i, i + 1) and we abbreviate [
x
]

G := ∑
g∈G(g ⊗ g)x(g−1 ⊗ g−1) for x ∈ kG ⊗ kG . Then one can show that Pλ,μ ∈ A (H) ∩ M0(H) and that �P is an 

isomorphism if and only if (λ, μ) ∈ (k×)2. However, there is no T ∈ H⊗4 such that the condition of Theorem 1.8 holds.

It turns out that P ∈ A (kG) ∩ M0(kG) with �P injective does not always exist for a given finite group G (for instance, 
it does not exist for dihedral groups different from S2 × S2 and S3) and thus it would be interesting to classify all finite 
groups G that admit such a P . Its existence provides a decomposition of kG into a direct sum of adjoint G-modules H V ,P

over all simple kG-modules V (a mock Peter–Weyl decomposition), which is an alternative to the well-known Maschke 
decomposition into the direct sum of matrix algebras. As a further example, we constructed an 8-parameter family of 
such P for G = S4. The answer is rather cumbersome (it involves 34 terms of the form [g ⊗ x]S4 , g ∈ S4, x ∈ kS4 and is 
available at https :/ /ishare .ucr.edu /jacobg /jdec-example .pdf).

Specializing Proposition 1.7 and Theorem 1.8 to quantized universal enveloping algebras, we can recover Joseph’s de-
composition [5]. Namely, let H = Uq(g) for a Kac–Moody algebra g and Cg be the (semisimple) category of highest weight 
integrable Uq(g)-modules (of type 1, see e.g. [1]); then V � is the graded dual of V . Let 
+ be the monoid of dominant 
weights for g and denote V (λ) a highest weight simple integrable module of highest weight λ ∈ 
+ . We construct P = Pg

with �Pg
injective in Lemma 2.9 and obtain the following theorem, which refines the results of [5].

Theorem 1.10.

(a) For λ ∈ 
+ , H V (λ),P = ad Uq(g)(K2λ) ∼= V (λ) ⊗ V (λ)� .
(b) The sum 

∑
λ∈
+ ad Uq(g)(K2λ) is direct and is a subalgebra of Uq(g).

Furthermore, part (c) of Proposition 1.7, which generalizes a classic result of Drinfeld [2], yields the following theorem.

Theorem 1.11. Let g be semisimple. Then the assignment |V | �→ cV defines an isomorphism of algebras Q(q) ⊗Z K0(g − mod) →
Z(Uq(g)).

This provides the following refinements of classic results of Duflo, Harish-Chandra and Rosso [10].

https://ishare.ucr.edu/jacobg/jdec-example.pdf
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Corollary 1.12. For g semisimple, Z(Uq(g)) is freely generated by the cV (ω) where the ω are fundamental weights of g, and 
cV (λ)cV (μ) = ∑

ν∈
+[V (λ) ⊗ V (μ) : V (ν)]cV (ν) for any λ, μ ∈ 
+ .

2. Notation and proofs

Recall that, given an H-bimodule B , B∗ is naturally an H-bimodule via (h � f 	 h′)(b) = f (h′ � b 	 h), f ∈ B∗ , h, h′ ∈ H , 
b ∈ B . In particular, H∗ is an H-bimodule.

2.1. Proof of Theorem 1.3

The following are immediate.

Lemma 2.1. 〈V , W �〉V ⊕W = 0 = 〈W , V �〉V ⊕W .

Lemma 2.2. Let V , W be left H-modules and let ρ : H ⊗k W → V be a k-linear map. Then:

(a) the assignment h �ρ (v, w) = (h � v + ρ(h ⊗ w), h � w), h ∈ H, v ∈ V , w ∈ W , defines a left H-module structure V ⊕ρ W
on V ⊕ W if and only if

ρ(hh′ ⊗ w) = ρ(h ⊗ h′ � w) + h � ρ(h′ ⊗ w), h,h′ ∈ H, w ∈ W . (1)

In that case, V is an H-submodule of V ⊕ρ W and W = (V ⊕ρ W )/V .
(b) A short exact sequence of H-modules 0 → V → U → W → 0 is equivalent to 0 → V −→ V ⊕ρ W −→ W → 0 for some ρ

satisfying (1).

Thus, given V ⊂ U in C , we can replace the natural short exact sequence 0 → V → U → U/V → 0 by the one from 
Lemma 2.2.

Lemma 2.3. Let V , W be left H-modules and let ρ be as in Lemma 2.2. Then βV ⊕ρ W (x + y) = βV (x) + βV (y) for any x ∈ V ⊗ V � , 
y ∈ W ⊗ W � .

Proof. It suffices to verify the assertion for x = v ⊗ f and y = w ⊗ g , v ∈ V , w ∈ W , f ∈ V � , g ∈ W � . We have, by 
Lemmata 2.1, 2.2(a):

βV ⊕ρ W (v ⊗ f + w ⊗ g)(h) = 〈h �ρ v ⊗ f + h �ρ w ⊗ g〉V ⊕W

= 〈h � v, f 〉V + 〈ρ(h ⊗ w), f 〉V ⊕W + 〈h � w, g〉W

= βV (v ⊗ f )(h) + βW (w ⊗ g)(h). �
Since 1V ⊕ρ W = 1V + 1W where 1V ∈ V ⊗ V � , 1W ∈ W ⊗ W � , it follows from Lemma 2.3 that zV ⊕ρ W = zV + zW and 

the map K0(C ) → ZC , |V | �→ zV is a well-defined surjective homomorphism of abelian groups. Also, zV ∈ ∑
[S]∈Iso◦ C ZzS

for each V ∈ C = C fin because it has finite length. Since the set {zV }[V ]∈Iso◦ C ⊂ H∗
C is k-linearly independent by Proposi-

tion 1.1(d), the injectivity follows. �
2.2. Algebra structure on H∗

C

Henceforth we assume that H = (H, m, �, ε) is a bialgebra. Then H∗ is a unital algebra with the multiplication defined 
by (φ · ξ)(h) = φ(h(1))ξ(h(2)), h ∈ H , φ, ξ ∈ H∗ , �(h) = h(1) ⊗ h(2) in Sweedler notation and with the unity being ε.

Lemma 2.4. (H∗)H is a subalgebra of H∗ .

Proof. Observe that φ ∈ (H∗)H if and only if φ(hh′) = φ(h′h) for all h, h′ ∈ H . Then, given h, h′ ∈ H and ξ, ξ ′ ∈ (H∗)H , we 
have:

(ξ · ξ ′)(hh′) = ξ(h(1)h
′
(1))ξ

′(h(2)h
′
(2)) = ξ(h′

(1)h(1))ξ
′(h′

(2)h(2)) = (ξ · ξ ′)(h′h). �
Proof of Theorem 1.4. Note that in the category of k-vector spaces there is a natural isomorphism κ : (V ⊗ V �) ⊗ (V ′ ⊗
V ′�) → (V ⊗ V ′) ⊗ (V ⊗ V ′)� , κ(v ⊗ f ⊗ v ′ ⊗ f ′) = v ⊗ v ′ ⊗ f ′ ⊗ f , v ∈ V , v ′ ∈ V ′ , f ∈ V � , f ′ ∈ V ′� . Then, clearly, 〈·, ·〉V ⊗V ′ ◦
κ = 〈·, ·〉V ⊗ 〈·, ·〉V ′ , which immediately implies that β̃V ⊗ β̃V ′ = β̃V ⊗V ′ ◦ κ where β̃U := βU ◦ πU and πU : U ⊗k U � →
U ⊗D(U ) U � is the natural projection. This proves the first assertion and also the second once we observe that 1V ⊗V ′ =
κ(1V ⊗ 1V ′ ). �



A. Berenstein, J. Greenstein / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 887–892 891
2.3. The Hopf algebra case

Suppose now that H = (H, m, �, ε, S) is a Hopf algebra. Since H is naturally an H-bimodule, ad : H → Endk H is a 
homomorphism of algebras. We also define ad∗ : Hop → Endk H by (ad∗ h)(h′) = S(h(1))h′ S2(h(2)), which is a homomorphism 
of algebras. Henceforth, given a ∈ H⊗n we write it in Sweedler-like notation as a = a1 ⊗· · ·⊗an with summation understood.

Proof of Theorem 1.5. We need the following equivalent descriptions of A (H).

Lemma 2.5. Let P = P1 ⊗ P2 ∈ H⊗̂H. The following are equivalent:

(a) P · (S2 ⊗ 1) ◦ �(h) = �(h) · P ;
(b) (1 ⊗ h) · P = (ad∗ h(1))(P1) ⊗ P2h(2);
(c) (ad∗ h ⊗ 1)(P ) = (1 ⊗ ad h)(P ).

Proof. By (a) we have h(1) ⊗ P1 S2(h(2)) ⊗ P2h(3) ⊗h(4) = h(1) ⊗h(2) P1 ⊗h(3) P2 ⊗h(4) for all h ∈ H . Then (b) and (c) follow by 
applying m(S ⊗ 1) ⊗ 1 ⊗ ε and m(S ⊗ 1) ⊗ m(1 ⊗ S), respectively, to both sides. Part (b) implies (a) since h(1)(ad∗ h(2))(h′) =
h′ S2(h). Finally, (c) implies (b) since (ad∗ h(1))(P1) ⊗ P2h(2) = P1 ⊗ ad h(1)(P2)h(2) = P1 ⊗ hP2. �
Lemma 2.6. Let B be an H-bimodule and set B�H := {b ∈ B : h � b = ε(h)b, h ∈ H}. Then B H ⊂ B�H ⊂ B S(H) with the equality if S
is invertible.

Proof. Let h ∈ H . Then for all b ∈ B H we have h � b = S2(h(2)) � b 	 S(h(1)) = S2(h(2))S(h(1)) � b = S(h(1) S(h(2))) � b = ε(h)b. 
On the other hand, for all b ∈ H�H , S(h) �b = ε(h(1))S(h(2)) �m = S(h(3))S2(h(2)) �m 	 S(h(1)) = S(S(h(2))h(3)) �m 	 S(h(1)) =
m 	 S(h). �

The following lemma is well known and can be proved similarly.

Lemma 2.7. Z(H) = H H = Had H := {h′ ∈ H : (ad h)(h′) = ε(h)h′, h ∈ H}. �
By Lemma 2.5(c) we have, for all h ∈ H , ξ ∈ H∗

C

�P (h � ξ) = (S2(h(2)) � ξ 	 S(h(1)))(P1)P2 = ξ((ad∗ h)P1)P2 = ξ(P1)(ad h)(P2) = (ad h)�P (ξ).

Furthermore, if ξ ∈ (H∗
C )H then �P (h � ξ) = ε(h)�P (ξ) = (ad h)�P (ξ), whence �P (ξ) ∈ Z(H). �

Proof of Theorem 1.8. Suppose that P satisfies (� ⊗ 1)(P ) = t1 P1t2 ⊗ t3 P ′
1t4 ⊗ P2 P ′

2, for some T = t1 ⊗ t2 ⊗ t3 ⊗ t4 ∈ H⊗̂4

where P = P1 ⊗ P2 = P ′
1 ⊗ P ′

2. Then for any ξ, ξ ′ ∈ H∗
C

�P (ξ · ξ ′) = (ξ · ξ ′)(P1)P2 = ξ(t1 P1t2)ξ
′(t3 P ′

1t4)P2 P ′
2 = (t2 � ξ 	 t1)(P1)(t4 � ξ ′ 	 t3)(P ′

1)P2 P ′
2

= �P (t2 � ξ 	 t1) · �P (t4 � ξ ′ 	 t3). (2)

Take ξ ∈ H∗
V , ξ ′ ∈ H∗

V ′ . Then ξ · ξ ′ ∈ H∗
V ⊗V ′ by Theorem 1.4(a) and �P (ξ · ξ ′) ∈ H V ,P · H V ′,P by (2). Therefore, P ∈ M (H). 

Furthermore, assume that t2t1 ⊗ t4t3 = 1 ⊗ 1, and let ξ, ξ ′ ∈ (H∗
C )H . Then (2) yields �P (ξ · ξ ′) = �P (t2t1 � ξ) ·�P (t4t3 � ξ ′) =

�P (ξ) · �P (ξ ′). This implies that P ∈ M0(H). �
2.4. Applications

Let R(H) be the set of pairs (R+, R−), R± ∈ H⊗̂H , such that R+
21 R− · �(h) = �(h) · R+

21 R− for all h ∈ H and (� ⊗
1)(R±) = R±

13 R±
23, (1 ⊗ �)(R+) = R+

13 R+
12. Clearly, (R, R) ∈ R(H) if R is an R-matrix for H .

Lemma 2.8. Suppose that there exists g ∈ H group-like such that gS2(h) = hg for all h ∈ H. Let (R+, R−) ∈ R(H). Then P :=
R+

21 · R− · (g ⊗ 1) ∈ A (H) ∩ M0(H).

Proof. Write R± = r±
1 ⊗ r±

2 = s±
1 ⊗ s±

2 . Since R+
21 R− · �(h) = �(h) · R+

21 R− we have

P · (S2 ⊗ 1)(�(h)) = r+
2 r−

1 gS2(h(1)) ⊗ r+
1 r−

2 h(2) = r+
2 r−

1 h(1)g ⊗ r+
1 r−

2 h(2) = �(h) · P .

Thus, P ∈ A (H). Furthermore, (� ⊗ 1)(P ) = R+
32 R+

31 R−
13 R−

23(g ⊗ g ⊗ 1) = P1 ⊗ r+
2 r−

1 g ⊗ r+
1 P2r−

2 . Since (� ⊗ 1)(R+) = r+
1 ⊗

s+ ⊗ r+s+ , by Lemma 2.5(b), we obtain:
1 1 1
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(� ⊗ 1)(P ) = (ad∗ r+
1 )(P1) ⊗ r+

2 s+
2 r−

1 g ⊗ P2s+
1 r−

2 = (ad∗ r+
1 )(P1) ⊗ r+

2 P ′
1 ⊗ P2 P ′

2

= S(r+
1 )P1 S2(s+

1 ) ⊗ r+
2 s+

2 P ′
1 ⊗ P2 P ′

2.

Thus, P ∈ M (H) with T = (S ⊗ S2 ⊗ 1 ⊗ 1)(R+
13 · R+

23). Finally, (mop ⊗ mop)(T ) = S2(s+
2 )S(r+

1 ) ⊗ r+
2 s+

2 = (S ⊗ 1)(R+ · (S ⊗
1)(R+)) = 1 ⊗ 1. Thus, P ∈ M0(H). �

If P is as in Lemma 2.8, we obtain

�P (βV (v ⊗ f )) = r+
1 〈r+

2 r−
1 g � v, f 〉V r−

2 = r+
1 〈r−

1 � g(v), f 	 r+
2 〉V r−

2 , v ∈ V , f ∈ V �. (3)

Let k = Q(q) and let Uq(g) be a quantized enveloping algebra corresponding to a symmetrizable Kac–Moody algebra g, 
which is a Hopf algebra generated by Ei , Fi , i ∈ I and Kμ , μ ∈ 
, where 
 is a weight lattice of g, with �(Ei) = 1 ⊗ Ei +
Ei ⊗ Kαi , �(Fi) = Fi ⊗ 1 + K−αi ⊗ Fi , �(Kμ) = Kμ ⊗ Kμ , ε(Ei) = ε(Fi) = 0 and ε(Kμ) = 1, where αi , i ∈ I are simple roots 
of g. Let K be the subalgebra of Uq(g) generated by the Kμ , μ ∈ 
. After [2,8], there exists a unique R-matrix in a weight 
completion Uq(g)⊗̂Uq(g) of the form R = R0 R1, where R1 ∈ U+

q (g)⊗̂U−
q (g) is essentially �op in the notation of [8] and 

satisfies (ε ⊗ 1)(R1) = (1 ⊗ ε)(R1) = 1 ⊗ 1, while R0 ∈ K⊗̂K is determined by the following condition: for any K-modules 
V ± such that Kμ|V ± = q(μ,μ±) idV ± , μ, μ± ∈ 
, we have R0|V −⊗V + = q(μ−,μ+) idV −⊗V + . Here (·, ·) is the Kac–Killing form 
on 
 × 
 ([6]). The following is immediate.

Lemma 2.9. Let R = r1 ⊗ r2 be as above. Let vλ ∈ V (λ) ( fλ ∈ V (λ)�) be a highest (respectively, lowest) weight vector of weight λ

(respectively, −λ), λ ∈ 
+ . Then r1 � vλ ⊗ r2 = vλ ⊗ Kλ and r1 ⊗ fλ 	 r2 = Kλ ⊗ fλ . �
Proof of Theorem 1.10. Since V (λ) is a simple highest weight module, D(V (λ)) ∼= k. Note that for any λ, μ ∈ 
+ , V (λ) ⊗
V (μ) is a simple Uq(g ⊕ g) = Uq(g) ⊗ Uq(g)-module of highest weight (λ, μ). Twisting V (λ) with the anti-automorphism 
of Uq(g) interchanging Fi and Ei , we conclude that V (λ) ⊗ V (λ)� is a simple Uq(g)-bimodule. Taking into account that 
g = K−2ρ we obtain from Lemma 2.9 and (3) that �P (βV (λ)(vλ ⊗ fλ)) = Kλ〈g � vλ, fλ〉Kλ ∈ k×K2λ . Since V (λ) ⊗ V (λ)� is 
cyclic on vλ ⊗ fλ as Uq(g)-module with the � action, H V (λ) is cyclic on K2λ as the ad Uq(g)-module by the above. Since 
βV (λ) is injective by Theorem 1.1(c) and �P is injective by [2] (see also [9,11]), it follows that H V (λ)

∼= V (λ) ⊗ V (λ)� . This 
proves (a). Then the sum in (b) is direct by Proposition 1.7(b) and coincides with HCg,P , which is always a subalgebra 
of H . �
Proof of Theorem 1.11. Since D(V (λ)) ∼= k, Theorem 1.10 implies that Z(HCg,Pg

) = ⊕
λ∈
+ kcV (λ) , hence the assignment 

|V (λ)| �→ cV (λ) is an isomorphism k ⊗Z K0(Cg) → �Pg
((H∗

Cg
)H ) = Z(HCg,Pg

) as in Proposition 1.7(c). By [7], K0(Cg) =
K0(g − mod) where g − mod is the category of finite dimensional g-modules. On the other hand, each non-zero element 
of Z(Uq(g)) is ad-invariant, hence generates a one-dimensional ad Uq(g)-module and thus is contained in HCg,Pg

by [5]. 
Therefore, Z(Uq(g)) ⊂ HCg,Pg

hence Z(Uq(g)) = Z(HCg,Pg
). �
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