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In this note, we announce new regularity results for some locally integrable distributional 
solutions to Poisson’s equation. This includes, for example, the standard solutions obtained 
by convolution with the fundamental solution. In particular, our results show that there 
is no qualitative difference in the regularity of these solutions in the plane and in higher 
dimensions.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Dans cette note, nous annonçons de nouveaux résultats de régularité pour des solutions 
distributionelles localement intégrables à l’équation de Poisson. Cela comprend, par 
exemple, les solutions standard obtenues par convolution avec la solution fondamentale. 
En particulier, nos résultats montrent qu’il n’y a aucune différence qualitative de régularité 
entre ces solutions dans le plan et celles en dimensions supérieures.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Main results

If f ∈ C∞
c (RN ), a classical solution to Poisson’s equation

−�u = f (1)

is given by convolution with the fundamental solution to Laplace’s equation (see, for example, [6, Chapter 6, Theorem 6.21, 
p. 157]): When N = 2,

u(x) = 1

2π

∫
R2

log
1

|x − y| f (y) dy, (2)

while for N ≥ 3,
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u(x) = �( N
2 )

2π
N
2 (N − 2)

∫
RN

f (y)

|y − x|N−2
dy. (3)

For f ∈ Lp(RN ), 1 < p < +∞, the existence of L1
loc(R

N ) distributional solutions to (1), i.e. u ∈ L1
loc(R

N ) which satisfy

−
∫
RN

u�ϕ =
∫
RN

f ϕ, (4)

for all ϕ ∈ C∞
c (RN ), follows from a priori estimates on potentials and density arguments. Moreover, if one considers only 

solutions that satisfy the growth condition

u(x)

|x| → 0 as |x| → ∞, (5)

then such a u ∈ L1
loc(R

N ) is unique up to a constant (for the convenience of the reader, we provide a short proof of this 
Liouville-type theorem below).

In the forthcoming work [4], we establish several new sharp estimates for potentials related to (2) and (3) mapping 
f ∈ Lp(RN ), N

2 < p ≤ N . In particular, for N = 2 we define the map (which is a modified form of the potentials considered 
by Strömberg and Wheeden [9, p. 294])

T̃ jh(x) := 1

2π

∫
R2

[
y j − x j

|y − x| − y j

|y|
]

h(y) dy,

for which we show

Theorem 1.1. Let 1 < p ≤ 2.

i) If 1 < p < 2, then there exists C = C(p) such that

|T̃ jh(x) − T̃ jh(z)| ≤ C |x − z|2− 2
p ‖h‖L p(R2)

for all h ∈ Lp(R2) and j = 1, 2.
ii) If p = 2 and 1 ≤ q < 2, then there exists C = C(q) such that

|T̃ jh(x) − T̃ jh(z)| ≤ C |x − z| (| log |x − z|| + 1)
1
2
(‖h‖L2(R2) + ‖h‖Lq(R2)

)
for all h ∈ L2(R2) ∩ Lq(R2) and j = 1, 2.

When N ≥ 3, letting

Ĩ2 f (x) := �( N
2 )

2π
N
2 (N − 2)

∫
RN

[
1

|y − x|N−2
− 1

|y|N−2

]
f (y) dy

denote the modified Newtonian potential, we prove

Theorem 1.2. Let N ≥ 3. For any 1 ≤ q < N, there exists C = C(q, N) such that

| Ĩ2 f (x) − Ĩ2 f (z)| ≤ C |x − z| (| log |x − z|| + 1)
1

N′ (‖ f ‖Lq(RN ) + ‖ f ‖LN (RN ))

for all f ∈ LN (RN ) ∩ Lq(RN ), where N ′ denotes the Hölder conjugate of N.

Then, establishing

u := T̃1 R1 f + T̃2 R2 f (6)

solves (4) for N = 2, where R j is the standard j-th Riesz transform,

R j f (x) := 1

2π

∫
R2

x j − y j

|x − y|3 f (y) dy,

and u = Ĩ2 f solves (4) for N ≥ 3, we are able to conclude the main result we announce in this note, the following theorem 
on the regularity of the unique solution to (4) satisfying (5).
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Theorem 1.3. Suppose that N ≥ 2 and either f ∈ Lp(RN ) with N
2 < p < N or f ∈ LN(RN ) ∩ Lq(RN ) for some 1 ≤ q < N. Then there 

exists u ∈ L1
loc(R

N ) which satisfies (4), for which one has the following regularity estimates.

i) If N
2 < p < N, then

|u(x) − u(z)| ≤ C |x − z|2− N
p ‖ f ‖L p(RN ).

ii) If p = N, then denoting by N ′ it’s Hölder conjugate, one has

|u(x) − u(z)| ≤ C |x − z| (| log |x − z|| + 1)
1

N′ (‖ f ‖LN (RN ) + ‖ f ‖Lq(RN )

)
.

In particular, this solution satisfies (5), and hence it is unique up to a constant.

In the regime in which N
2 < p < N , and when N ≥ 3, sharp Hölder regularity follows easily from known potential 

estimates (see, for example, [8, Section 4.2, Theorem 2.2, p. 155]). Our result shows how this approach via potentials can be 
extended to N = 2, provided that one is willing to utilize some basic Fourier analysis. The experts will recognize that one 
could alternatively deduce Part i) of this result from the embeddings (on the Triebel–Lizorkin/Besov scale)

Ḟ 2
p2 ↪→ Ḟ 2

pp = Ḃ2
pp ↪→ Ḃ

2− N
p∞∞ ,

see [5, pp. 95–96]. The estimate for p = N is new in this setting—here we recall that an analogous supercritical estimate was 
shown for functions in the Sobolev space W 2,N (RN ) by Brezis and Wainger [2, Corollary 5]. While one has the inclusion

W 2,p(RN) � {u ∈ L1
loc(R

N) : �u ∈ Lp(RN)},
it is, in general, strict. For example, taking f = χB(0,1)(x), one can verify that when N = 2 there is no q ∈ [1, ∞] such 
that u ∈ Lq(R2), while when N = 3 there is no q ∈ [1, 3] such that u ∈ Lq(R3). Therefore, while the known embeddings 
for W 2,p(RN ) cannot be applied, our result establishes that the solutions to Poisson’s equation enjoy analogous regularity 
estimates (which are known to be sharp—see, for example, [7, Chapter 1, p. 62, Remark 1] and [2, Corollary 5]).

We now sketch a proof that the function defined by (6) solves (4). Here we take the convention

ϕ̂(ξ) =
∫
R2

ϕ(x)e−2π ix·ξ dx

for the Fourier transform, and our computation should be interpreted in the sense of tempered distributions.

Proof 1. First, we remark that for N
2 < p < N , one can show the estimate (whose precise proof can be found in [4])∫

R2

∣∣∣∣ y j − x j

|y − x| − y j

|y|
∣∣∣∣ |R j f (y)| dy ≤ C |x|2− N

p ‖ f ‖L p(R2),

for j = 1, 2. Therefore, Fubini’s theorem implies

−
∫
R2

u�ϕ = − 1

2π

∑
j=1,2

∫
R2

⎛
⎜⎝∫
R2

[
y j − x j

|y − x| − y j

|y|
]

R j f (y) dy

⎞
⎟⎠�ϕ(x) dx

= − 1

2π

∑
j=1,2

∫
R2

⎛
⎜⎝∫
R2

[
y j − x j

|y − x| − y j

|y|
]

�ϕ(x) dx

⎞
⎟⎠ R j f (y) dy.

Further, since the divergence theorem implies 
∫
R2 �ϕ(x) dx = 0, we have that∫

R2

[
y j − x j

|y − x| − y j

|y|
]

�ϕ(x) dx =
∫
R2

y j − x j

|y − x| �ϕ(x) dx.

Now, we define

g j(y) := − 1

2π

∫
2

y j − x j

|y − x| �ϕ(x) dx.
R
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If we can show that g j = R jϕ almost everywhere, then we would have

−
∫
R2

u�ϕ =
∑
j=1,2

∫
R2

R jϕR j f

=
∫
R2

f ϕ,

which is the thesis. Notice that

g j(y) = − y j

2π

∫
R2

1

|y − x|�ϕ(x) dx + 1

2π

∫
R2

1

|y − x| x j�ϕ(x) dx,

and therefore,

ĝ j(ξ) = 1

2π i

∂

∂ξ j

(
(2π |ξ |)−1�̂ϕ(ξ)

)
+ (2π |ξ |)−1

(
x̂ j�ϕ(ξ)

)

= i

[
∂

∂ξ j
(|ξ |ϕ̂(ξ)) − 1

|ξ |
∂

∂ξ j
(|ξ |2ϕ̂(ξ)

]

= −i
ξ j

|ξ | ϕ̂(ξ)

= R̂ jϕ.

Thus, we have proved that g j = R jϕ as distributions, which implies almost everywhere equality as functions, and the result 
is demonstrated. �

An aspect of our result worth further mention is the new representation formula for the logarithmic potential given 
by (6). More generally, we show in [4] that such a factorization of the logarithmic potential holds in any number of dimen-
sions, which is interestingly related to the H1 − BMO duality. We recall that the abstract result of Fefferman and Stein [3]
(or the later constructive proof of Uchiyama [10]) implies that any u ∈ BMO(RN ) has a representation

u = u0 +
N∑

j=1

R ju j

for some {u j}N
j=0 ⊂ L∞(RN ). More recently, Bourgain and Brezis [1] have shown that for certain BMO functions one can take 

u0 ≡ 0. Our result shows that for the canonical example of a BMO function—log |x|—one has explicitly u0 ≡ 0 and u j = c
x j
|x| .

Finally, we give a short proof of the Liouville-type theorem remarked in the beginning.

Proof 2. Given u1, u2 that satisfy (4) and (5), define w := u1 − u2. Then w is harmonic and also satisfies (5). Thus, first 
utilizing the mean value property for harmonic functions and then the growth condition (5), one has

|w(x) − w(y)| ≤ C

rN

∫
B(x,r)�B(y,r)

|w(z)| dz

≤ Cε

rN

∫
B(x,r)�B(y,r)

|z| dz,

for all ε > 0 and all r sufficiently large (depending on ε, |x|, |y|). As r → ∞ the right-hand side stays bounded for x, y fixed, 
after which one can send ε → 0. �

As mentioned earlier, the proofs of Theorems 1.1 and 1.2 will appear in the forthcoming work [4], where we also address 
regularity properties of more general cases of Riesz and Riesz-type potentials, as well as the application of these results to 
deduce the embedding theorem of Brezis and Wainger [2, Corollary 5] in the supercritical case.
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