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We show that a recent result of Demailly and Pham Hoang Hiep [12] implies a description 
of plurisubharmonic functions with given Monge–Ampère mass and smallest possible log 
canonical threshold. We also study an equality case for the inequality from [12].
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r é s u m é

Nous montrons qu’un résultat récent de Demailly et Pham Hoang Hiep [12] implique une 
description des fonctions plurisousharmoniques avec une masse de Monge–Ampère donnée 
et le seuil log-canonique le plus petit possible. Nous étudions aussi le cas d’égalité dans 
l’inégalité de [12].

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

Let PSH0 denote the collection of germs of all plurisubharmonic functions at the origin of Cn . A basic characteristic 
of singularity of u ∈ PSH0 is its Lelong number νu = νu(0) = lim inf u(z)/log |z| as z → 0. One more characteristic, intro-
duced in various contexts by several authors (first, probably, in [22]), and which attracted recently considerable attention 
(e.g., [2,3,11–13,15–17]), is the integrability index (at 0) λu = inf{λ > 0 : e−u/λ ∈ L2

loc(0)}. For an ideal I = I( f1, . . . , fm) ⊂O0

generated by analytic germs f1, . . . , fm , the value c(I) = λ−1
log | f | is the log-canonical threshold of I . Accordingly, cu = λ−1

u is 
called the log canonical threshold of u.

A classical result due to Skoda [22] states that

ν−1
u ≤ cu ≤ n ν−1

u , (1)

the extremal situations (equalities) being realized, for example, for u = log |z1| (for the first inequality) and u = log |z|
(for the second one). A description of all functions u with cu = nν−1

u was given in [21]. The other extremal relation seems 
to be more involved. The only known-to-us result in this direction concerns the case n = 2, where the functions satisfying 
cu = ν−1

u are proved in [15] to be of the form u = c log | f | + v , where f is an analytic function regular at 0, and v ∈ PSH0
has zero Lelong number at 0.
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In this note, we concentrate on lower bounds for the log canonical threshold, with the main focus when the inequalities 
become equalities.

In [9] and [18], the log canonical threshold of a zero dimensional ideal I ⊂ O0 was related to its Samuel multiplicity 
e(I):

c(I) ≥ n e(I)−1/n, (2)

with an equality if and only if the integral closure of I is a power of the maximal ideal m0 ⊂ O0. It was used by De-
mailly [11] for a corresponding bound for plurisubharmonic functions u with isolated singularity at 0, and extended then 
by Zeriahi [24] to all u with (ddcu)n well defined (more precisely, for all u from the Cegrell class E [6]),

cu ≥ n en(u)−1/n. (3)

Here ek(u) are the Lelong numbers of the currents (ddcu)k at 0:

ek(u) = (
ddcu

)k ∧ (
ddc log |z|)n−k

(0), 1 ≤ k ≤ n,

and d = ∂ + ∂̄ , dc = (∂ − ∂̄)/2π i. The Cegrell class F(D) is formed by limits of decreasing sequences of bounded plurisub-
harmonic functions u j in D such that u j = 0 on ∂ D and sup j

∫
D(ddcu j)

n < ∞, and u ∈ E(D) if, for any K � D , one can find 
v ∈ F(D) such that u = v on K , see [6]. In particular, all negative plurisubharmonic functions that are bounded outside a 
compact subset of D belong to E(D).

Note that e1(u) = νu . When I = I( f1, . . . , f p) ⊂ O0 is a zero-dimensional ideal, then en(log | f |) = e(I), see [11]. If 
codim V (I) = k, the values ek(log | f |) are mixed Rees multiplicities ek(I) of I and the maximal ideal m0 that were consid-
ered, e.g., in [4].

A direct proof of Demailly’s inequality (3) without using (2) was obtained in [2]. In [11], the question of equality in (3)
has been raised, and it was conjectured that, similarly to the analytic case u = log | f |, the extremal functions should be 
plurisubharmonic functions with logarithmic singularity at 0.

In [21], Demailly’s inequality was used to get the ‘intermediate’ bounds

cu ≥ k ek(u)−1/k, 1 ≤ k ≤ l, (4)

where l is the codimension of an analytic set A such that u−1(−∞) ⊂ A. None of the bounds for different values of k can 
be deduced from the others.

In a recent paper [12], an optimal bound for the integrability index in terms of the Lelong numbers was obtained: if 
u ∈ E near 0 and e1(u) > 0, then

cu ≥ En(u) :=
∑

1≤k≤n

ek−1(u)

ek(u)
, (5)

where e0(u) = 1. It is easy to see that this bound implies all the relations (4) for the case when l = n (that is, for u with 
isolated singularity). Here we will show that it also gives an answer to the aforementioned question on equality in (3).

To state it, we need the following notion from [20]. Let D be a bounded, hyperconvex neighborhood of 0. Given a 
function u ∈ PSH−(D) (negative and plurisubharmonic in D), its greenification gu at 0 is the regularized upper envelope of 
all functions v ∈ PSH−(D) such that v ≤ u + O (1) near 0.

The greenification of log |z| is the standard pluricomplex Green function with pole at 0. For u satisfying (ddcu)n = 0
on a punctured neighborhood of the origin, gu is the Green function in the sense of Zahariuta [23]. The greenification of 
a multi-circled singularity u(z) = u(|z1|, . . . , |zn|) + O (1) in the unit polydisk Dn is the so-called indicator: a multi-circled 
function satisfying gu(|z1|c, . . . , |zn|c) = cgu(z) ∀c > 0 [21].

One has always (ddc gu)n = 0 on {gu > −∞}. Evidently, gu ≥ u, while the relation gu = u + O (1) needs not be true. 
Nevertheless, the greenification keeps the considered characteristics of singularity:

Lemma 1.1. Let u ∈ PSH0 and let gu be its greenification on a bounded hyperconvex neighborhood D of 0. Then λgu = λu . If, in 
addition, u ∈ E on a neighborhood of 0, then gu ∈F(D), (ddc gu)n = 0 on D \ {0}, and ek(gu) = ek(u) for all k.

Therefore, the only information on the asymptotic behavior of u that one can expect from the values of cu and ek is the 
one on its greenifications gu .

Theorem 1.2. For any u ∈ E near 0, the relation cu = n en(u)−1/n holds if and only if its greenification for some (and then for any) 
bounded hyperconvex domain D satisfies gu = e1(u) log |z| + O (1) as z → 0.

Corollary 1.3. Let u ∈ F(D), e1(u) = 1, and 
∫

D(ddcu)n = (nλu)n. Then u is the pluricomplex Green function for D with logarithmic 
singularity at 0.
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In the case of analytic singularities, u = log | f |, statement (i) of Theorem 1.2, recovers the aforementioned result from 
[9] on equality in the bound for log canonical thresholds.

The next question is when equalities in (4) and (5) occur. Moreover, the latter bound can be extended to the case of 
functions not from E , which rises a question on the equality cases.

Theorem 1.4. If u ∈ PSH0 is locally bounded outside an analytic set of codimension l > 1, then

cu ≥ El(u) :=
∑

1≤k≤l

ek−1(u)

ek(u)
. (6)

(Note that relation (6) for l = 1 is the lower bound in Skoda’s inequalities (1) and it does not require any assumption 
on u.)

For multi-circled singularities ϕ(z) = ϕ(|z1|, . . . , |zn|) + O (1) and any l, it was proved in [21] that the relation cϕ =
l el(ϕ)−1/l holds if and only if its greenification gϕ in Dn equals e1(z) max j∈ J log |z j | for an l-tuple J ⊂ {1, . . . , n}.

Theorem 1.5. If a multi-circled plurisubharmonic singularity ϕ satisfies cϕ = El(ϕ), then

gϕ(z) = max
j∈ J

log |z j|
a j

(7)

for some l-tuple J = ( j1, . . . , jl) ⊂ {1, . . . , n} and a j > 0.

A characterization of functions of the form (7) is that they generate monomial valuations vϕ on plurisubharmonic singu-
larities u by vϕ(u) = lim inf u(z)/ϕ(z) as z → 0. One could ask if the statement of Theorem 1.5 remains true for ϕ generating 
quasi-monomial valuations, i.e., monomial ones on birational models [5]. As the following example shows, the answer is no.

Example 1. As follows from [14], the function ϕ = log(|z4
1| + |z3

1 − z2
2|) generates a quasi-monomial valuation. Since u =

log |z3
1 − z2

2| ≤ ϕ ≤ v = log(|z4
1| + |z3

1| + |z2
2|) and cu = cv = 5/6, we have cϕ = 5/6 > E2(ϕ) = 3/4.

2. Proofs

1. Proof of Lemma 1.1. Evidently, cgu ≥ cu . By the Choquet lemma, there exists a sequence u j increasing a.e. to gu and such 
that u j ≤ u + O (1) and so, cu j ≤ cu . Semicontinuity theorem [13] shows then cgu ≤ cu .

Let u ∈ E(ω), 0 ∈ ω ⊂ D . Then there exists v ∈ F(ω) such that v = u near 0. Furthermore, there exists w ∈ F(D) such 
that w ≤ v on ω [8]. Since w ≤ gu , the function gu belongs to F(D). The relation (ddc gu)n = 0 outside 0 follows by 
standard arguments, because the maximality of v ∈ E on an open set U is equivalent to (ddc v)n(U ) = 0.

To prove ek(gu) = ek(u), we take again a sequence u j increasing a.e. to gu ; u j can be chosen to be from the class F(D); 
otherwise we replace them by max{u j, w}. Therefore, the currents (ddcu j)

k converge to (ddc gu)k [7] (the result is stated 
there only on the convergence of (ddcu j)

n , while the proof uses induction in the degree k). By the semicontinuity theorem 
for the Lelong numbers [10], this implies lim sup j→∞ ek(u j) ≤ ek(gu). On the other hand, the relations u j ≤ u + O (1) ≤ gu

give us, by the comparison theorem for the Lelong numbers [10], ek(u) ≤ lim sup ek(u j) and ek(gu) ≤ ek(u). �
2. Further proofs are based essentially on estimate (5) and the following uniqueness result.

Lemma 2.1. (See [1, Thm. 3.7]; for greenifications of isolated singularities, [20, Lem. 6.3].) If u, v ∈ F(D) are such that u ≤ v and 
(ddcu)n = (ddc v)n, then u = v. As a consequence, if u, v ∈ E , u ≤ v + O (1) near 0, and en(u) = en(v), then gu = gv .

3. Proof of Theorem 1.2. By Lemma 1.1, we can assume u = gu . Relation (5) gives us En(u) = n en(u)−1/n , and by the 
arithmetic–geometric mean theorem, we get then

ek−1(u)

ek(u)
= el−1(u)

el(u)

for any k, l ≤ n, which implies en(u) = [e1(u)]n . Let v = e1(u)G , where G denotes the pluricomplex Green function for 
D with logarithmic pole at 0. Since u ∈ PSH−(D) satisfies u ≤ e1(u) log |z| + O (1) as z → 0, we have u ≤ v on D , while 
en(u) = en(v). By Lemma 2.1, we conclude then u = v . �
4. Proof of Theorem 1.4. The restriction uL of u to a generic l-dimensional subspace L ∈ G(l, n) has isolated singularity at 0
and, by Siu’s theorem, ek(uL) = ek(u). By [13, Prop. 2.2], we have also cu ≥ cuL . Therefore, we can apply (5) to uL and get 
the bound (6). �



24 A. Rashkovskii / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 21–24
5. Proof of Proposition 1.5. By considering again the restriction to a generic l-dimensional coordinate plane, we can assume 
l = n and ϕ to coincide with its greenification gϕ in Dn .

As was proved in [12], the bound (5) for multi-circled functions follows from the inequality

ϕ ≤ Φ(z) := ∣∣ϕ(z∗)
∣∣ max

j

log |z j|
a j

with a j = | log |z∗
j || (e.g., [19, Prop. 3]), where z∗ ∈ Π = {z : |z1 · . . . · zn| = 1/e} is chosen such that |ϕ(z∗)| = | min{ϕ(z) :

z ∈ Π}| = λϕ [17, Thm. 5.8]. Namely, Ek(ϕ) ≤ Ek(Φ) for all k and cϕ = cΦ = En(Φ). Therefore, cϕ = En(ϕ) implies En(ϕ) =
En(Φ).

Following [12], we set t0 = 1 and consider the function f (t) = ∑n
1 t j−1/t j on the convex set {t ∈ R

n+ : t2
j ≤ t j−1t j+1}. 

The function is decreasing in each variable t j and strictly decreasing in tn . Note that En(v) = fn(e1(v), . . . , en(v)) for any 
v ∈ PSH0 with isolated singularity. If en(ϕ) > en(Φ), then we would have En(ϕ) < En(Φ), which is not true. Therefore, 
en(ϕ) = en(Φ) and, since ϕ ≤ Φ , we get ϕ = Φ by Lemma 2.1.
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