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RESUME

Nous obtenons des estimations finales pour les constantes de I'échantillonnage dans les
espaces de Bernstein lorsque la densité des échantillons est proche de la valeur critique.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a number o > 0, the Bernstein space B, is defined to be the set of all entire functions f satisfying for all real x
and y the inequality | f(x +iy)| < Cexp(o|y|) with some C = C(f).
A set A C R is called uniformly discrete (u.d.) if
inf
AN €A AEN

r—2|>0.
One says that A is a (stable) sampling set for B, if there exists K such that
I f1l:=sup| f(®)] < Ksup|fF(M)| (f €By).
teR reA
The minimal constant K for which this holds is called the sampling constant K(A, By).
The classical Beurling theorem [2] characterizes sampling sets for B, in terms of the lower uniform density
. . #AN(@a+l
D™ (A) := lim min J

|—00 aeR

Without loss of generality, one may consider the case o = 7. Then Beurling’s theorem states:
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A is a sampling set for By if and only if D~ (A) > 1.

The most delicate point in Beurling’s proof (see [2]) is to show that no sampling set A may have the critical density
D= (A)=1.

If D~(A) =1, one can show that constant K(A, By) grows to infinity when o approaches 1 from below. When A =7,
S.N. Bernstein [1] proved that the growth is precisely logarithmic:

1<(Z,B(,)=;1og 71 (1+o(M) (o tm).

T —0

A slightly weaker result was proved in [3]. See also [6] where some estimates for K(A, B, ) are obtained. We mention
also [4], where the Gabor frame considered for the Gaussian window, which corresponds to the lattice aZ x aZ, and the
asymptotics of the frames constants are obtained near the critical value a = 1.

2. Results
2.1. Sampling in Bernstein spaces
We are interested in the asymptotic behavior of the sampling constant K(A, By,) for irregular sampling A near the

critical value of density. Our main result shows that K(A, Bs) must have at least logarithmic growth.
We will denote by C different absolute positive constants.

Theorem 1. Let A be a u.d. set with D~ (A) = 1. Then

K(A,Bgy) > Clog

p— O<o <m). (1)

The proof is based on a reduction of the sampling problem to a similar one for the algebraic polynomials. This approach
provides a new proof for the critical case in Beurling’s theorem above.

It should be mentioned that removing even a single point from A may result in a much faster growth of the sampling
constants. For example, it is straightforward to check that

K(Z\ {0}, Bo) > ni 0 <o <)

In fact, the constant K(A, By) may have arbitrarily fast growth:

Theorem 2. For every function w(o) 1 oo (o 1 1) there exists a u.d. set A, D~ (A) =1, such that
K(A,By)>w(o) (0 <m).

2.2. Sampling in Py

Denote by P, the space of all algebraic polynomials of degree <n on the unit circle T:={ze C:|z| =1}.
Given a finite set A C T, #A > n, one may introduce the corresponding sampling constant

max P(z
KA. Py = sup XeerlP@I
PePy,P£0 MaXyen [P(A)]

Theorem 3. For every A C T, #A > n, the estimate holds:

K(A, Py) > Clog

#A—n 2)

3. Sampling in spaces of polynomials

The following result essentially goes back to Faber:
Let U be a projector from the space C(T) onto the subspace Py. Then ||U| > Clogn,

see [5], ch. 7.
Faber’s approach is based on averaging over translations. Different versions of the result have been obtained by this
approach. We will use the following one due to ALA. Privalov [8] (see also [7]):

For every projector U above and every family of linear functionals v (1 < j <m) in C(T), there is a unit vector f in C(T) such
that ||Uf]| > Clogn/m, and the functionals vanish on f.
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Proof of Theorem 3. Let n and m be positive integers. Given any | := (n+ 1) +m points &§; € T (0 < j <I), for any f e C(T)
denote by P(f) the polynomial of degree n satisfying
P(HEp=FfEj) (0=<j=<n).

Clearly, P(f) is uniquely defined, and the operator U : f — P(f) is a projector from C(T) onto Pj.
Set

Vi(f):=P(f)nyj) (A=j=m).

Now we apply Privalov’s theorem. We get a function f satisfying

Ifil=1,  P(HEH=0 (m+1=j=D), ||P(f)||>C10g%-

Then (2) follows. O
4. Sampling in B,

We will sketch the proofs of Theorems 1 and 2. More details can be found in our preprint [7].
Let N be a positive integer and A C [—N, N]. Set
AN =AU (—00,—N]U[N, 00).

By Beurling’s theorem, Ay is a sampling set for B;. We show that for large N, the sampling constant K (A, B;) must be
large unless the number of points of A in (—N, N) is “much larger than” 2N:

Proposition 1. For every A C [—N, N], #A > 2N, we have:

K(Ay, By) > Clog (3)

2N
#A—2N’
The proof consists of several steps.
1. First notice that by a simple change of variable in Theorem 3, one obtains:

Corollary 1. Given v e Nand aset I' C [—v, v], #I" > 2v, there is an exponential polynomial

P()= ) cxe™ " € By, 4

[k|<v
such that maxy ey |P(y)| < 1and

max|P(t)| = Clog

V
i 5
ltl<v #I —2v (5)

2. We may assume that N is a large number. It is easy to see that it suffices to prove (3) for the case:

1
2N+ N3 <#A<(2+—|N. 6
+ <#A< +100 (6)

Using appropriate re-scaling, one can see that under condition (6), inequality (3) follows from the inequality:

2N

K(AN, Br/(1-5)) = Clog ————,
(AN, Br/1-6)) = 8 %A _2N

(7)

where 0 <8 < N~1/3,
3. To prove (7), we fix a number v, N —2¢/N < v < N — +/N. Set

I =A+2vZ)Nn[—v,v].
Without loss of generality, we may assume that #I" = #A. Then, by Corollary 1, there is an exponential polynomial P
satisfying (4), (5) and |P(t)| <1 on I, which implies |P(t)] <1 on A.
Denote by tp a maximum modulus point of P that lies on [—v, v]. We may assume that P(tg) satisfies:

|P(to)| = Clog (8)

2v
#I —2v°
where C is the constant in (5).
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4. Set
h(t) := Si;ft, g(t) = POh(v13(t —to)).

Define § by 1+ v~1/3=1/(1 —§). So, § < N~1/3, as required. Then

8 € Bratv-13) = Br/a1-s)-

We see that |g(t)] <1 on A. The distance from tq to the points +N is at least +/N, so by (8), for all t > N we get:

lg®] < [Po)|[h(v" (€t —t))| < 1.

This gives (7). Proposition 1 is proved.

It is not difficult to deduce Theorem 1 from Proposition 1.

Theorem 2 is also an easy consequence of Proposition 1. Indeed, fix any function w(o) 1 oo (0 1+ m) and any sequence
0j >0 (0 1 7). Then it suffices to find a u.d. set A, D™ (A) =1, such that K(A, Bs;) > @(0j+1), j € N. One may obtain
such a set A as an infinite union of finite arithmetic progressions with differences 7 /o, j € N. By Proposition 1, A will
satisfy the property above provided these progressions are sufficiently long.
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