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This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) 
in two and three dimensions in the quasistatic regime. Two key figures of CALR are 
(i) the localized resonance and (ii) the connection between the localized resonance and 
the blow up of the power of the fields as the loss goes to 0. An important class of 
negative index materials for which the localized resonance might appear is the class of 
(reflecting) complementary media introduced and analyzed in [8–10]. It was shown in [12]
that the complementary property of media is not enough to ensure such a connection. In 
this paper, we introduce a subclass of complementary media called the class of doubly 
complementary media. This class is rich enough to allow us to do cloaking via anomalous 
localized resonance for an arbitrary source concentrating on an arbitrary smooth bounded 
manifold of codimension 1 located in an arbitrary medium. The following three properties are 
established: 1) CALR appears if and only if the power blows up; 2) the power blows up if 
the source is “located” near the plasmonic structure; 3) the power remains bounded if the 
source is far away from the plasmonic structure. Property P2), the blow up of the power, 
is in fact established for reflecting complementary media.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions l’invisibilité par résonance localisée anormale (CALR) en deux et trois 
dimensions en régime quasi-statique. Deux figures principales de CALR sont i) la résonance 
localisée et ii) la liaison entre la résonance localisée et l’exposion de la puissance quand 
la perte de la matériel tend vers 0. Une importante classe de matériels de l’indice négatif 
pour laquel la résonance localisée peut apparaître est la classe de milieux complémentaires 
introduite et analysée dans [8–10]. Il a été noté dans [12] que la propriété complémentaire 
ne suffit pas à assurer une telle liaison. Dans cette note, nous introduisons une sous-classe 
des milieux complémentaires s’appelée la classe des milieux doublement complémentaires. 
Cette classe est suffisament large pour accomplir l’invisibilité par résonance localisée 
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anormale une source arbitraire concentrant sur une sous-variété arbitraire de codimension 1
placé dans un milieu arbitraire. Les trois propriétés suivantes sont établies : 1) CALR 
apparaît si et seulement si la puissance explose ; 2) la puissance explose si la source est 
« placée » près de la structure plasmonique ; 3) la puissance reste bornée si la source est loin 
de la structure plasmonique. Propriété P2), l’explosion de la puissance est en fait établie 
pour les milieux complémentaires.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago in [17] and were innovated by Nicorovici 
et al. in [13] and Pendry in [14]. The existence of such materials was confirmed by Shelby et al. in [16]. The study of NIMs 
has attracted a lot attention in the scientific community thanks to their many possible applications. One of the appealing 
ones is cloaking via anomalous localized resonance.

Cloaking via anomalous localized resonance (CALR) was discovered by Milton and Nicorovici in [7] and has root from [13]
(see also [6]). In [7], Milton and Nicorovici studied the core–shell plasmonic structures in the two-dimensional quasistatic 
regime in which a circular shell has permittivity −1 + iδ, while the core and the matrix, the complement of the core and 
the shell, have permittivity 1. Here δ denotes the loss of the material in the shell. Let re and ri be the outer and the inner 
radius of the shell. They showed that there is a critical radius which is r∗ := (r3

e r−1
i )1/2 such that a polarizable point dipole 

is not seen by an observer away from the core–shell structure, hence it is cloaked, if and only if it is within distance r∗ of 
the shell; moreover, the power of the field uδ , which is roughly speaking δ‖uδ‖2

H1 , blows up in a bounded neighborhood 
of the shell. They called this phenomenon “cloaking via anomalous localized resonance”. Two key figures of CALR are i) 
the localized resonance, i.e., the field blows up in some region and remains bounded in some other, and ii) the connection 
between the localized resonance and the blow up of the power of the fields as the loss goes to 0.

The study of CALR has been mainly based on separation of variables see [1–4,6,7]. In addition to the separation of 
variables technique, there are two methods suggested by Ammari et al. in [1] and Kohn et al. in [5] to study the blow up 
of the power. They considered non-radial core–shell structures in which the shell has permittivity −1 + iδ and the core and 
the matrix have permittivity 1 in the two-dimensional quasistatic regime. In [1], Ammari et al. dealt with arbitrary shells 
and provided a characterization of sources for which the power blows up. Their characterization is based on the spectrum 
of a self-adjoint compact operator (Neumann–Poincaré-type operator). In [5], Kohn et al. considered core–shell structures in 
which the outer shell surface is radially symmetric, but the core is not. Using a variational approach, they showed that the 
power blows up for a class of sources concentrated on circles within distance r∗ = (r3

e r−1
i )1/2 of the core–shell structure Bre

if the core is inside Bri . In [5], they also showed that the power remains bounded for a class of sources concentrated on 
circles outside Br∗ if the core is round, inside, and close to Bri .

One of the key figures of CALR is the localized resonance. An important class of NIMs for which the localized resonance 
might appear is the class of reflecting complementary media. This class was introduced and studied in [8]. This work is 
inspired from the pivotal one of Nicorovici et al. in [13] and from the important suggestion of concept of complementary 
media due to Ramakrishna et al. in [15]. The localized resonance related to materials in this class in the context of cloaking 
and superlensing was analyzed in [9,10]. It was shown in [12] that the complementary property of media is not enough to 
ensure a connection between the blow up of the power and the localized resonance.

In this paper, we introduce a subclass of reflecting complementary media called the class of doubly complementary 
media. This class is rich enough to allow us to do cloaking via anomalous localized resonance for an arbitrary source
concentrating on an arbitrary smooth bounded manifold of codimension 1 placed in an arbitrary medium. The following 
three properties, which are what one would expect from a structure for which CALR takes place, are established for doubly 
complementary media in both two and three dimensions:

(P1) CALR appears if and only if the power blows up (Theorem 1);
(P2) the power blows up if the source is “located” near the shell (Theorem 2);
(P3) the power remains bounded if the source is far away from the shell (Proposition 1 and Theorem 3).

In fact, Property P2) is established for reflecting complementary media. These results in this paper are inspired by and 
imply recent ones of Ammari et al. in [1] and Kohn et al. in [5] and extend theirs to a general class of non-radial core–shell
structures in both two and three dimensions.

2. Statement of the main results

Let d = 2, 3, Ω be a smooth open bounded subset of Rd and let A be a uniformly elliptic matrix-valued function defined 
in Ω , i.e.,
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1

Λ
|ξ |2 ≤ 〈

A(x)ξ, ξ
〉 ≤ Λ|ξ |2 ∀ξ ∈ R

d, (1)

for a.e. x ∈ Ω and for some 0 < Λ < +∞. Let 0 < r1 < r2 < r3 be such that Br3 � Ω . Set

sδ :=
{ −1 + iδ in Br2 \ Br1 ,

1 otherwise.
(2)

Let f ∈ L2(Ω) with supp f ∩ Br2 = ∅ and let uδ ∈ H1
0(Ω) be the unique solution to

div(sδ A∇uδ) = f in Ω. (3)

The power (dissipative energy) Eδ(uδ) is defined by (see, e.g., [7])

Eδ(uδ) = δ

∫
Br2 \Br1

|∇uδ |2.

From the definition of uδ , one can verify that∫
Ω

|∇uδ|2 ≤ C

( ∫
Br2 \Br1

|∇uδ|2 + ‖ f ‖L2

)
,

for some positive constants C independent of f and δ ∈ (0, 1). Let vδ ∈ H1
0(Ω) be the unique solution to

div(sδ A∇vδ) = fδ in Ω. (4)

Here

fδ = cδ f ,

and cδ is the constant such that

δ

∫
Ω

|∇vδ|2 = 1.

In this paper, we are interested in a class of A, the class of doubly complementary media, for which CALR takes place. In 
particular, if Eδ(uδ) → ∞ then vδ → 0 in the region far away from Br2 . Before giving the definition of doubly complementary 
media for a general core–shell structure, let us recall the definition of reflecting complementary media introduced in [8, 
Definition 1].

Definition 1 (Reflecting complementary media). The media A in Br3 \ Br2 and −A in Br2 \ Br1 are said to be reflecting com-
plementary if there exists a diffeomorphism F : Br2 \ B̄r1 → Br3 \ B̄r2 such that

F∗ A = A for x ∈ Br3 \ B̄r2 , (5)

F (x) = x on ∂ Br2 , (6)

and the following two conditions hold:

1. There exists a diffeomorphism extension of F , which is still denoted by F , from Br2 \ {x1} → Br4 \ B̄r2 for some x1 ∈ Br1

and r3 < r4 ≤ +∞.1

2. There exists a diffeomorphism G : Br4 \ B̄r3 → Br3 \ {x2} for some x2 ∈ Br3 such that2

G(x) = x on ∂ Br3 , (7)

and

G ◦ F : Br1 → Br3 is a diffeomorphism if one sets G ◦ F (x1) = x2. (8)

As noted in [8], conditions (5) and (6) are the main assumptions in the definition of complementary media. The term 
“reflecting” in the definition comes from (6) and the fact that Br1 ⊂ Br2 ⊂ Br3 . Conditions 1 and 2 in the definition are mild 
assumptions. Introducing G in the definition makes the analysis more accessible, see [8–10].

We are ready to introduce the concept of doubly complementary media.

1 Br4 denotes Rd when r4 = +∞.
2 In (6) and (7), F and G denote some diffeomorphism extensions of F and G in a neighborhood of ∂Ω2 and of ∂Ω3.
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Definition 2 (Doubly complementary media). The medium s0 A is said to be doubly complementary if and only if, for some 
r3 > r2 with Br3 � Ω , A in Br3 \ Br2 and −A in Br2 \ Br1 are reflecting complementary, and

F∗ A = G∗ F∗ A = A in Br3 \ Br2 , (9)

for some F and G from Definition 1.

Define Ω0 = (G ◦ F )−1(Br3 \ Br2). Then A in Ω0 and −A in Br2 \ Br1 are reflecting complementary in the sense that

(
F −1 ◦ G ◦ F

)
∗ A = (

F −1)
∗G∗ F∗ A = (

F −1)
∗ F∗ A = A in Br2 \ Br1

and

F −1 ◦ G ◦ F (x) = x on ∂ Br1 ,

since G(x) = x on ∂ Br3 and F (∂ Br1 ) = ∂ Br3 . Hence −A in Br2 \ Br1 is complementary to A in Br3 \ Br2 and A in Ω0. This is 
the reason for which media satisfying (9) are called doubly complementary media.

Remark 1. We assumed that Br2 \ Br1 is the region of negative index and the region Br3 \ Br2 is its reflecting complementary 
medium. Since A is only assumed symmetric and uniformly elliptic in these regions, the radial assumption of these regions 
is mainly for the simplicity of presentation.

The first main result of the paper, which implies Property P1), is:

Theorem 1. Let d = 2, 3, gn ∈ L2(Ω) with supp gn ⊂ Ω \ Br2 , (δn) be a positive sequence converging to 0. Assume that A satisfies (1)
and (9), and A ∈ C2(Br3 \ Br2 ) and let vn ∈ H1

0(Ω) be the unique solution to

div(sδn A∇vn) = gn in Ω.

Assume that gn → g weakly in L2(Ω) for some g ∈ L2(Ω), and limn→∞ δn‖∇vn‖2
L2(Ω)

= 0. Then vn → v weakly in H1(Ω \ Br3)

where v ∈ H1
0(Ω) is the unique solution to

div( Â∇v) = g in Ω.

Here

Â =
{

A in Ω \ Br3 ,

G∗ F∗ A in Br3 .
(10)

Let us explain how Theorem 1 implies the equivalence between the blow up of the power and the CALR. Suppose that 
the power of uδn blows up3, i.e.,

lim
n→∞ δn‖∇uδn‖2

L2(Br2 \Br1 )
= +∞. (11)

It follows from the definition of vδn in (4) that vδn ∈ H1
0(Ω) is the unique solution to

div(sδn A∇vδn) = αn f in Ω;
moreover,

δn

∫
Ω

|∇vδn |2 = 1. (12)

Since αn f → 0 by (11), one derives from Theorem 1 that vδn → 0 in Ω \ Br3 : the source αn f is not seen by observers far 
away from the shell: the source is cloaked (see also [1] for a detailed explanation of this property). We note that localized 
resonance takes place since (12) holds and vδn → 0 in Ω \ Br3 . If the power of uδn remains bounded, then uδn → u weakly 
in H1(Ω \ Br3 ) where u ∈ H1

0(Ω) is the unique solution to div( Â∇u) = f in Ω . The source is not cloaked. Property P1) is 
proved.

The second main result of the paper, which implies Property P2), is

3 Recall that uδ is defined by (3).
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Theorem 2. Let d = 2, 3, 0 < R1 < R2 < +∞, M be a uniformly elliptic matrix-valued function defined in B R2 \ B R1 , and let f , g ∈
L2(B R2 \ B R1 ). Assume that M is Lipschitz and let Uδ, V δ ∈ H1(B R2 \ B R1 ) be such that

div(M∇Uδ) = g in B R2 \ B R1 , div(M∇V δ) = h in B R2 \ B R1 ,

and

Uδ = V δ on ∂ B R1 , M∇Uδ · η = (1 − iδ)M∇V δ · η on ∂ B R1 .

Then there exists a constant R∗ ∈ (R1, R2) depending on R1 , R2 , the Lipschitz constant and the elliptic constant of M, but independent 
of δ, f , and g such that if there is no v ∈ H1(B R∗ \ B R1 ) with the properties

div(M∇W ) = g − h in B R∗ \ B R1 , W = 0 on ∂ B R1 , and M∇W · η = 0 on ∂ B R1 , (13)

then

lim
δ→0

δ
(‖Uδ‖2

H1(B R2 \B R1 )
+ ‖V δ‖2

H1(B R2 \B R1 )

) = +∞. (14)

Assume in addition that M = I in B R2 \ B R1 , then

R∗ can be taken by any number less than
√

R1 R2. (15)

Property P2), which is also valid for reflecting complementary media (in particular (5) and (6) hold), can be derived from 
Theorem 2 as follows. Define vδ = uδ ◦ F in Br3 \ Br2 . By [8, Lemma 2] (a change of variables formula), one has:

vδ = uδ and A∇uδ · η = (1 − iδ)A∇vδ · η on ∂ Br2 .

Applying Theorem 2 for R1 = r2, R2 = r3, Uδ = uδ , and V δ = vδ , one reaches Property P2) for reflecting complementary 
media.

Remark 2. From Theorem 2, by taking A = I , one rediscovers, by a different approach, the result of Ammari et al. in [1] and 
also of Kohn et al. in [5] on the blow up of the power as mentioned in the Introduction.

The following result, which motivated our definition of doubly complementary media and implies Property P3), was 
established in [8] (see [8, Theorems 1 and 2 and Corollary 1]):

Proposition 1. Let d = 2, 3, f ∈ L2(Ω) with supp f ∩ Br3 = ∅. Assume that A satisfies (1) and (9), and A ∈ C1(Br3 \ Br2 ). Then 
‖uδ‖H1(Ω) remains bounded as δ → 0.

The third main result of this paper is the following qualitative estimate for Property P3).

Theorem 3. Let d = 2, 3, f ∈ L2(Ω) with supp f ⊂ Ω \ Br2 . Assume that A satisfies (1) and (9), and A = I in Br3 \ Br2 . Let uδ ∈ H1
0(Ω)

be the unique solution to

div(sδ A∇uδ) = f in Ω.

Assume that there exists v ∈ H1(Br0 \ Br2 ) for some r0 >
√

r2r3 with the properties

div(A∇v) = f in Br0 \ Br2 , v = 0 on ∂ Br2 , and A∇v · η = 0 on ∂ Br2 .

Then

lim sup
δ→0

δ‖uδ‖2
H1(Ω)

< +∞.

Remark 3. From Theorem 3, one rediscovers, by a different approach, the results of Ammari et al. [1] and also of Kohn et 
al. [5] on the boundedness of the power by taking A = I in Ω .4

4 In a recent discussion with Graeme Milton, we realize that the result of Kohn et al. on the boundedness of the power [5, Theorem 5.3] can be derived 
from the radial setting using the Mobius transformation. We are grateful to him for the discussion.



46 H.-M. Nguyen / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 41–46
The proofs of the results presented in this paper are based on several new techniques and observations. One of the 
difficulties in the study of CALR is the localized resonance. To handle this difficulty, we extend the reflecting and the 
removing of localized singularity techniques introduced in [8–10], and implement the separation of variables for Cauchy 
problems for a general structure, which is one of the keys of our analysis. The condition A ∈ C2(Br3 \ Br1) is required from 
the technique of separation of variables. The proof of Theorem 2, which is one of new observations, is based on three sphere 
inequalities. The theory presented here allows us to do cloaking via anomalous localized resonance for an arbitrary source 
concentrating on an arbitrary smooth bounded manifold of codimension 1 placed in an arbitrary medium will be given in 
[11]. The two key points behind this fact are as follows. Firstly given arbitrary A in Br3 \ Br2 , one can choose A in Br2 such 
that s0 A is a doubly complementary medium. For example, let F and G be the Kelvin transform with respect to ∂ Br2 and 
∂ Br3 respectively. Define A by F −1∗ A in Br2 \ Br1 with r1 = r2

2/r3 and F −1∗ G−1∗ A in F −1 ◦ G−1(Br3 \ Br2) = Br2 \ Br3
2/r2

3
. Then 

s0 A is a doubly complementary medium. Secondly, there is no v as in Theorem 2 for such a concentrating source as the 
source is located near the shell.

The details of the proofs of the results presented here are given in [11].
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