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The present note is devoted to the functional calculus problem for sections of a quasi-
coherent sheaf on a Nœtherian scheme. We prove scheme-theoretic analogs of the known 
results on the multivariable holomorphic functional calculus over Fréchet modules which 
are mainly due to of J. Taylor and M. Putinar. The generalization of the Taylor joint 
spectrum considered in the paper leads to subvarieties of an algebraic variety over an 
algebraically closed field. In particular, every algebraic variety is represented as the joint 
spectrum of related coordinate multiplication operators.
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r é s u m é

La présente Note est consacrée à un problème de calcul fonctionnel sur les sections 
d’un faisceau quasi cohérent d’un schéma nœthérien. Nous démontrons des analogues des 
résultats connus du calcul fonctionnel holomorphe en plusieurs variables sur les modules 
de Fréchet, essentiellement dus à J. Taylor et M. Putinar. Nous considérons un analogue 
du spectre joint de Taylor dans un cadre très général, conduisant à des sous-variétés d’une 
variété algébrique sur un corps algébriquement clos. En particulier, toute variété algébrique 
est réalisée comme le spectre joint des opérateurs de multiplication par les coordonnées 
correspondantes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the central problems of operator theory and functional analysis is to represent a functional algebra as an algebra 
of linear operators, which is known as the functional calculus problem. Some variety of this problem can be seen in the 
category of Banach algebras, C∗-algebras and Fréchet algebras. The basic idea of this direction is to study commuting linear 
operators by means of the modules over function algebras. A homological approach to the multivariable holomorphic func-
tional calculus problem was proposed by J.L. Taylor in [18]. Certain details of the approach were improved in [12, Ch. 6] by 
A.Ya. Helemskii. Taylor’s holomorphic functional calculus in the context of Stein spaces was considered in [13] by M. Putinar. 
The main part of Putinar’s work is to establish a link to complex analytic geometry. Actually the problem itself is expressed 

E-mail addresses: dosiev@yahoo.com, dosiev@metu.edu.tr.
http://dx.doi.org/10.1016/j.crma.2014.10.007
1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2014.10.007
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:dosiev@yahoo.com
mailto:dosiev@metu.edu.tr
http://dx.doi.org/10.1016/j.crma.2014.10.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2014.10.007&domain=pdf


58 A. Dosi / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 57–61
like a problem of analytic sheaves involving tools of homological algebra and sheaf cohomology. The properties of softness 
and quasi-coherence of an analytic sheaf appeared implicitly in early works on abstract spectral decompositions by I. Colo-
joařa, C. Foiaş [5], and F.-H. Vasilescu [19] (see also J. Eschemeier and M. Putinar [10]). These ideas were developed further 
in [14,15,9]. A noncommutative version of the multivariable holomorphic functional calculus in elements of a nilpotent Lie 
algebra of operators was developed in [8,6,7]. The relevant functional calculus problem is solved (as in the commutative 
case) in terms of the Taylor joint spectrum σ(T ) of an operator family T = (T1, . . . , Tn) generating a nilpotent Lie subalge-
bra in the algebra B(M) of all bounded linear operators acting on a complex Banach space M . One of the key properties 
of the joint spectrum is the spectral mapping formula σ( f (T )) = f (σ (T )) with respect to a family f of noncommutative 
functions. In the general (noncommutative) case, the problem of existence of a joint spectrum with (polynomial) spectral 
mapping property has no solution (see [1,18]). But instead one can consider the projective spectrum P(T ) introduced by 
R. Yang in [20]. In the case of a potential joint spectrum σ(T ) for a class of noncommutative operators T , the projective 
spectrum P(T ) is reduced to the projective hull of σ(T ). Recall that a hyperplane H in Cn (or in Pn

C
) is called a supporting 

hyperplane of σ(T ) if it is normal to a certain λ, λ ∈ σ(T ). The union of all possible supporting hyperplanes of σ(T ) is 
called a projective hull P(σ (T )) of σ(T ). Thus P(σ (T )) = P(T ) (see [20] for the commutative case). In the noncommutative 
case, the topological properties of Cn\P(T ) based on de Rham’s cohomology and its link to cyclic cohomology have been 
established in [3] by P. Cade and R. Yang.

The main motivation of the present note is to provide an abstract algebraic geometry version of the multivariable holo-
morphic functional calculus. Being an algebraic reflection of complex analysis, the scheme theory creates a solid foundation 
of algebraic geometry. Many results of complex analytic geometry have their analogs in schemes. Among them, let us con-
firm the fundamental theorem of Serre on vanishing [11, 3.3.7]. Note that quasi-coherent analytic Fréchet sheaves are not 
precisely the same as quasi-coherent sheaves in algebraic geometry, nonetheless both sheaves have many common proper-
ties. The presence of many other parallel properties justifies the present project on a fundamental nature of the multivariable 
functional calculus.

2. Spectrum of a module

The following definition is a scheme-theoretic analog of the Putinar spectrum of analytic sheaves considered in [13,7].

Definition 2.1. Let X be a scheme, A a quasi-coherent sheaf of OX -algebras, A = Γ (X, A) and M ∈ A-mod. The resolvent 
set res(A, M) of the module M with respect to the sheaf A is defined as a set of those x ∈ X that admit an open affine 
neighborhood U such that A(U ) ⊥ A M , that is, TorA

n (A(U ), M) = 0 for all n ≥ 0. Obviously, res(A, M) is an open subset of 
X and its complement set σ(A, M) = X − res(A, M) is called a spectrum of the module M with respect to the sheaf A. If 
A=OX we write σ(X, M) instead of σ(OX , M).

The following assertion describes a local nature of the spectrum.

Proposition 2.2. Let X be a scheme, A a quasi-coherent sheaf of OX -algebras, A = Γ (X, A) and M ∈ A-mod. Then x ∈ res(A, M)

iff there is an open affine neighborhood U of x such that Ay ⊥ A M for all y ∈ U . If X = Spec(A) is an affine scheme and M ∈ A-mod, 
then σ(X, M) consists of those points x ∈ X such that M y �= 0 for all y close to x, that is, σ(X, M) = Supp(M) ⊆ V (Ann(M)), where 
Supp(M) = {x ∈ X : Mx �= 0} is the support of M, and V (Ann(M)) is the set of all prime ideals of A containing the annihilator Ann(M)

of M.

Corollary 2.3. Let X be a scheme, A = Γ (X, OX ), U = Spec(B) ⊆ X an open affine subscheme, and let M ∈ A-mod. If B is a flat 
module over A then U ∩σ(X, M) = σ(U , B ⊗ A M) = U ∩Supp(B ⊗ A M). In particular, if there is an open affine covering X = ⋃

i∈I Ui

such that Ui = Spec(Bi) and Bi is a flat module over A, then σ(X, M) = ⋃
i∈I σ(Ui, Mi) and σ(Ui, Mi) = Ui ∩ Supp(Mi), where 

Mi = Bi ⊗ A M ∈ Bi-mod, i ∈ I .

Corollary 2.4. Let A be a ring, S = A[x0, . . . , xr], M ∈ A-mod, and let X = Proj(S) be the projective space Pr
A over A. Then 

σ(X, M) = ⋃r
i=0 σ(D+(xi), M(xi)) and σ(D+(xi), Mi) = Supp(M(xi)) ∩ D+(xi), where M(xi) = S(xi) ⊗ A M, D+(xi) is the com-

plement to hyperplane xi = 0. In particular, σ(Pr
k, M) = P

r
k whenever M is a nonzero vector space over a field k.

The latter equality stated in Corollary 2.4 is observed for the projective spectrum in some special cases (see [20]). 
Based on Proposition 2.2, we obtain that if X = Spec(A) and M is a finitely generated A-module then res(X, M) = {x ∈ X :
Ax ⊥ A M}. A module M that admits a finite free resolution P is called a finitely free module. If, additionally, every member 
of the resolution P has a finite basis, we say that M is of finite type. The latter equality for res(X, M) can be generalized to 
Nœtherian schemes in the following way, which is the analog of Taylor’s result on analytically parameterized Banach space 
complexes from [17].

Proposition 2.5. Let X be a Nœtherian scheme, A a coherent sheaf of OX -algebras, A = Γ (X, A) and let M ∈ A-mod be a module of 
finite type. Then res(A, M) = {x ∈ X :Ax ⊥ A M}.
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3. Spectral mapping theorem in the affine case

First we suggest a scheme-theoretic analog of the known result due to of M. Putinar [10, Lemma 5.4.1] (see also [13, 
Proposition 3]) on a necessary condition for holomorphic functional calculus to be defined on a Stein domain.

Proposition 3.1. Let X = Spec(A) be an affine scheme, M ∈ A-mod and let U ⊆ X be an open affine subscheme. If M ∈OX (U )-mod
compatible with its original A-module structure along the restriction homomorphism A →OX (U ) then Supp(M) ⊆ U .

Now let us provide the analog of Putinar’s spectral mapping theorem [13] for affine schemes.

Theorem 3.2. Let X = Spec(B) and Y = Spec(A) be affine schemes, f : X → Y a morphism, M ∈ B-mod. Then M has a natural 
A-module structure denoted by A M, and we have the following spectral mapping formula σ(Y , A M) = f (σ (X, M)).

Corollary 3.3. Let B be a ring with its unital subring A ⊆ B, and Y = Spec(A). Then Supp(A B) is dense in Y .

4. Calculation of spectra

Now let k be a field, A = k[x1, . . . , xn] the algebra of all polynomials in n variables x = (x1, . . . , xn) over k, and let 
M ∈ A-mod with the actions xi · m = Ti(m), m ∈ M , 1 ≤ i ≤ n determined by a tuple T = (T1, . . . , Tn) of commuting linear 
transformations on M .

Proposition 4.1. Let X be a scheme with A = k[x1, . . . , xn] to be the ring Γ (X, OX ) of all global sections, and let M ∈ A-mod. Then 
p ∈ res(X, M) iff there is an open affine neighborhood U = Spec(B) of p such that the Koszul complex Kos(B ⊗k M, t B,M) is exact, 
where t B,M

i = 1 ⊗ Ti − (xi |U ) ⊗ 1, 1 ≤ i ≤ n. If dimk(M) < ∞ and X is a Nœtherian scheme, or M is a finitely generated A-module 
and X = Spec(A) is affine, then res(X, M) = {p ∈ X : Kos(OX,p ⊗k M, t p,M) is exact}, where t p,M

i = 1 ⊗ Ti − xi(p) ⊗ 1.

Consider purely affine case, A = k[x1, . . . , xn] and X = Spec(A) =A
n
k is the affine space over k.

Theorem 4.2. Let X = A
n
k be the affine space over k. If p ∈ res(X, M) then k(p) ⊥ A M, that is, the complex Kos(k(p) ⊗k M, t p,M) is 

exact, where k(p) = Ap/mp is the residue field at p. Thus

res(X, M) ⊆ {
p ∈ X : k(p) ⊥ A M

} ⊆ {p ∈ X : Mp = mp Mp}.

In particular, if M is a finitely generated A-module then res(X, M) = {p ∈ X : k(p) ⊥ A M} thanks to Nakayama’s lemma.

5. Algebraic varieties

Now let A = k[x1, . . . , xn], k an algebraically closed field, X = A
n
k , and let M ∈ A-mod be a finitely generated module. 

Consider the variety An of all closed points in X , and define σc(X, M) to be σ(X, M) ∩ A
n . If p ∈ σ(X, M) then V (p) =

{p} ⊆ σ(X, M) and q ∈ V (p) ∩ A
n ⊆ σc(X, M) for every maximal ideal q, that is, σ(X, M) is the closure of σc(X, M) in X . 

If a = (a1, . . . , an) ∈ A
n then k(a) = k and k(a) ⊥ A M just means that Kos(M, ta,M) is exact, where ta,M

i = Ti − ai . Based 
on Theorem 4.2, we conclude that σc(X, M) = σ(T ), where T − a = (T1 − a1, . . . , Tn − an) is an operator tuple on M , and 
σ(T ) = {a ∈ A

n : Kos(M, T − a) is not exact} is the Taylor (joint) spectrum of the operator family T on M . Note that a point 
p ∈ A

n
k corresponds to a prime ideal of the polynomial algebra A, which in turn defines a variety Y p = Z(p) ⊆ A

n whose 
coordinate ring A(Y p) is reduced to the A-module A/p, where Z(p) is the set of zeros of the ideal p. Using Proposition 2.2, 
we obtain that σ(An

k , A(Y p)) = Supp(A(Y p)) = V (p) is the set of all subvarieties of Y p called a spectrum of Y p and denoted 
by σ(Y p).

Proposition 5.1. Let Y p ⊆ An be a variety over k with its prime ideal p. Then σ(Y p) = {q ∈A
n
k : Kos(A(Yq ×Y p)y, x − y) is not exact}. 

In particular,

Y p = σ
(
x|A(Y p)

)
,

where σ(x|A(Y p)) is the Taylor spectrum of the operator tuple x on A(Y p).

Thus Yq is a subvariety of Y p iff Kos(A(Yq × Y p)y, x − y) is not exact. Moreover, each algebraic variety is reduced to the 
Taylor spectrum of the related coordinate operators over the coordinate ring.
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6. Spectral decomposition and weak eigenvalues

Now let X = A
n
k be the affine space over the algebraically closed field k, A = k[x1, . . . , xn] and let M ∈ A-mod. Recall [2, 

4.1.1] that a prime ideal p ∈ X is said to be associated with M if p = Ann(m) for a certain m ∈ M . The set of all associated 
prime ideals is denoted by Ass(M). Since A is a Nœtherian ring, it follows that Ass(M) ⊆ Supp(M) ⊆ σ(X, M) (see [2, 4.1.3]). 
In particular, for each p ∈ Ass(M), we have the variety Y p ⊆ A

n associated with p. We say that the variety Y p is associated 
with M .

Proposition 6.1. Let M be a finitely generated A-module. Then σ(X, M) = ⋃
p∈Ass(M) σ (Y p), that is, the spectrum of M is the union 

of spectra of varieties associated with M.

As above, let M be a vector space over k, and let T = (T1, . . . , Tn) be a tuple of mutually commuting linear transfor-
mations on M . Thus M ∈ A-mod. A vector m ∈ M is said to be associated with T if r(T )m �= 0 and s(T )m �= 0 implies that 
(rs)(T )m �= 0, where r(x), s(x) ∈ A. A point a ∈ A

n is said to be a weak (joint) eigenvalue of the tuple T if there exists an 
associated with T vector m ∈ M such that m /∈ Ma,m , where Ma,m = {r(T )m ∈ M : r(a) = 0} is a submodule of M . In this 
case, m is called a weak (joint) eigenvector related to a. If Ma,m = 0 for some m then a is called an eigenvalue of T and m is 
an eigenvector related to a. Note that Ma,m = 0 means that Tim = aim for all i. In particular, r(T )m = r(a)m for all r(x) ∈ A, 
thereby m is a nonzero vector associated with T automatically. The set of all weak eigenvalues of the tuple T is denoted by 
σwpt(T ) called a weak point spectrum of T , whereas σpt(T ) denotes the set of all eigenvalues called the point spectrum of T .

Theorem 6.2. Let T = (T1, . . . , Tn) be a tuple of mutually commuting linear transformations on M that defines a finitely generated 
A-module structure on M, where A = k[x1, . . . , xn]. Then σpt(T ) ⊆ σwpt(T ) = σ(T ) and there are a finite number of weak eigenvec-
tors of T . If M is an A-module of finite length (in particular, if dimk(M) < ∞) then σpt(T ) = σwpt(T ) = σ(T ).

In particular, if T is a tuple of commuting complex matrices then the Taylor spectrum of T is reduced to the point 
spectrum σpt(T ), that is the result proven in [4].

Corollary 6.3. Let T = (T1, . . . , Tn) be a tuple of mutually commuting linear transformations on M which defines a finitely generated 
projective (or free) A-module structure on M, where A = k[x1, . . . , xn]. If M �= 0 then σwpt(T ) = A

n.

In particular, free or projective (see [16]) modules cannot be Banach modules whose spectra are bounded (compact) sets.

7. The functional calculus

Now we suggest a functional calculus theorem for a finitely-free module over the ring of global sections.

Theorem 7.1. Let X be a Nœtherian separated scheme, A is a coherent sheaf of OX -algebras on X such that H p(X, A) = 0, p > 0, 
and M ∈ A-mod a finitely free module, where A = Γ (X, A). If U ⊆ X is an open neighborhood of the spectrum σ(A, M) then 
M ∈A(U )-mod and its A(X)-module structure along the restriction homomorphism A(X) →A(U ) is reduced to the original one.

Corollary 7.2. Let A be a Nœtherian ring, X = Spec(A), M ∈ A-mod a finitely free module, and let U ⊆ X be an open subset containing 
the closure of the support Supp(M) of M. Then M makes into OX (U )-module extending its original A-module structure.

Corollary 7.3. Let A be a Nœtherian ring, S = A[x0, . . . , xr], X = P
r
A with r ≥ 1, M ∈ A-mod a finitely free module, and let U ⊆ X be 

an open subset such that U ∩ D+(xi) contains the closure of Supp(M(xi)) for every i. Then M makes into OX (U )-module extending its 
original A-module structure.

Proof. As in Corollary 7.2, X is a Nœtherian separated scheme and H p(X, OX ) = 0 for all p > 0 [11, 3.5.1]. By Corollary 2.4, 
σ(X, M) = ⋃r

i=0 σ(D+(xi), M(xi)) =
⋃r

i=0 Supp(M(xi)) ∩ D+(xi) ⊆ U . Therefore Theorem 7.1 is applicable. �
Corollary 7.4. Let k be an algebraically closed field, M a vector space over k, T = (T1, . . . , Tn) a family of mutually commuting linear 
transformations on M which defines a finitely generated k[x1, . . . , xn]-module structure on M. If U ⊆ A

n is an open subset containing 
σwpt(T ) then there is a functional calculus O(U ) → L(M), xi 
→ Ti , 1 ≤ i ≤ n, where O(U ) is the algebra of all regular functions 
on U .

Proof. Put A = k[x1, . . . , xn] and X = A
n
k . Since U is open in An , it follows that U = V ∩A

n for an open subset V ⊆ A
n
k . By 

Theorem 6.2, σwpt(T ) = σ(T ), where σ(T ) is the Taylor spectrum of the tuple T . Moreover, σ(T ) = σc(X, M) = σ(X, M) ∩A
n

thanks to Theorem 4.2. If p ∈ σ(X, M) then q ∈ {p} ∩ A
n for a certain q ∈ σ(T ) by virtue of Proposition 6.1. But q ∈

σ(T ) = σwpt(T ) ⊆ U ⊆ V , therefore p ∈ V , that is, σ(X, M) ⊆ V . Moreover, M is a finitely free A-module having its Koszul 
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resolution. Using Corollary 7.2, we derive that M makes into OX (V )-module extending its original A-module structure. But 
OX (V ) =O(U ) up to a natural isomorphism (see [11, Proposition 2.2.6]). Whence M turns into O(U )-module. �
Corollary 7.5. Let k be an algebraically closed field, M a finite dimensional vector space over k, T = (T1, . . . , Tn) a family of mutually 
commuting linear transformations on M. If U ⊆ A

n is an open subset containing the (finite) point spectrum σpt(T ) then there is a 
functional calculus O(U ) →L(M), xi 
→ Ti , 1 ≤ i ≤ n.

Proof. Use Corollary 7.4 and Theorem 6.2. �
Acknowledgements

I wish to thank F.-H. Vasilescu for useful consultations, and referee(s) to draw my attention to the paper [20].

References
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