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Let E be an elliptic curve over a real quadratic field K and F/K a totally real finite Galois 
extension. We prove that E/F is modular.
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r é s u m é

Soit E une courbe elliptique sur un corps quadratique réel K et F/K une extension 
totalement réele, finie et galoisienne. On demontre que E/F est modulaire.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For F a totally real number field, we write G F := Gal(Q/F ) for its absolute Galois group. For a Hilbert modular form f, 
we denote by ρf,λ its attached λ-adic representation. We say that a continuous Galois representation ρ : G F → GL2(Q�) is 
modular if there exist a Hilbert newform f and a prime λ | � in its field of coefficients Qf such that we have an isomorphism 
ρ ∼ ρf,λ . In [1] and [2, Section 5], the first named author proved a base change for the GL2 case over Q [2, Theorem 1.2].

Theorem 1. Let f be a classical modular form of weight k ≥ 2 and field of coefficients Q f . For a prime λ of Q f , write ρ f ,λ for the 
attached λ-adic representation. Let F/Q be a totally real number field. Then the Galois representation ρ f ,λ|G F is (Hilbert) modular in 
the sense above.

In the recent paper [3], the following modularity theorem is proved.

Theorem 2. Let E be an elliptic curve defined over a real quadratic field K . Then E is Hilbert modular over K .
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The aim of this note is to establish a base change result for certain elliptic curves as a consequence of Theorem 2. More 
precisely, we prove the following.

Theorem 3. Let E be an elliptic curve over a real quadratic field K . Let also F/K be a totally real finite Galois extension. Then E/F is 
modular.

This result has applications in the context of the Birch and Swinnerton–Dyer conjecture. Indeed, the modularity of E
after base change guarantees that the L-function L(E/F , s) is holomorphic in C and, in particular, its order of vanishing at 
s = 1 is a well-defined non-negative integer, in agreement with what is predicted by the BSD conjecture. Furthermore, the 
modularity of E/F allows the construction of Stark–Heegner points on E over (not necessarily real) quadratic extensions 
of F . For details regarding this application, we refer the reader to [4] and the references therein.

2. Elliptic curves with big non-solvable image mod p = 3, 5 or 7

Let F/K be a finite extension of totally real number fields. Let E/K be an elliptic curve. We will say that ρ E,p(G F ) is 
big if ρ E,p(G F (ζp)) is absolutely irreducible, otherwise we say it is small. In particular, if ρ E,p(G F ) is non-solvable, then it 
is big. We now restate [3, Theorems 3 and 4].

Theorem 4. Let p = 3, 5 or 7. Let F/K and E/K be as above. Suppose that ρE,p(G F ) is big. Then E is modular over F .

The following proposition is well-known.

Proposition 2.1. Let F/K be a finite Galois extension of totally real fields and E/K an elliptic curve. Let p be a prime and suppose that 
ρE,p(G K ) is non-solvable. Then ρE,p(G F ) is non-solvable.

Proof. Since ρ E,p(G K ) is non-solvable, we have p > 3. From Dickson’s theorem (see also Proposition 3.1), having ρ E,p(G K )

non-solvable implies that projectively ρ E,p(G K ) is A5 or PSL2(Fp) or PGL2(Fp). For the last two cases, the proposition is a 
particular case of [1, Lemma 3.2]. Since A5 is a simple group, the same argument as in [1, Lemma 3.2] also applies in this 
case. �

We have the following corollary.

Corollary 2.2. Let F/K and E/K be as in Proposition 2.1. Let p = 3, 5 or 7. Suppose that ρE,p(G K ) is non-solvable. Then E is modular 
over F .

Proof. From the previous proposition we have that ρ E,p(G F ) is non-solvable, hence it is big. Thus E/F is modular by 
Theorem 4. �
3. Elliptic curves with projective image S4 or A4 mod p = 3, 5 or 7

Let E/K be an elliptic curve. We have seen that if ρ E,p has a big non-solvable image, then after a base change to a 
totally real Galois extension its image is still non-solvable. We now want to understand what can happen when ρ E,p(G K )

is big and solvable. We first recall the following well-know fact.

Proposition 3.1. Let E/K be an elliptic curve. Write G for the image of ρE,p in GL2(Fp) and H for its image in PGL2(Fp). Then, there 
are the following possibilities:

(a) G is contained in a Borel subgroup;
(b) G contains SL2(Fp);
(c) H is cyclic, G is contained in a Cartan subgroup;
(d) H is dihedral, G is contained in the normalizer of a Cartan subgroup;
(e) H is isomorphic to A4, S4 or A5 .

Let p = 3, 5 or 7. Let also G and H be as in the proposition. Remembering that PSL2(F�) is simple for p ≥ 5, by 
Jordan–Moore’s theorem, and that PSL2(F3) � S4, we divide the cases where ρ E,p(G K ) is big and solvable into two types:

(I) H ∼= S4 or A4,
(II) H is dihedral.
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Suppose we are in case (I). Let F/K be a finite Galois extension and set H F := P(ρE,p(G F )). We would like that H F to be 
also isomorphic to A4 or S4, since this would mean that ρ E,p(G F ) is big and Theorem 4 applies. Since F/K is Galois, we 
have that H F is a normal subgroup of H . Write I = {1} for the trivial group and D4 for the dihedral group in four elements. 
The normal subgroups of S4 and A4 are respectively

• I , D4, A4 and S4,
• I , D4 and A4.

Thus, the cases where Theorem 4 does not apply over F are when the pair of groups (H, H F ) is one of

(S4, D4), (S4, I), (A4, D4), (A4, I). (1)

Since we are working with totally real fields, the complex conjugation has projective image of order 2. Thus the cases with 
H F = I cannot happen.

3.1. A Sylow base change

We now deal with the remaining cases from (1). Recall that we want to base change E/K to F where F/K is finite and 
Galois. Suppose that (H, H F ) is (S4, D4) or (A4, D4). Let F3 be a subfield of F such that the Galois group Gal(F/F3) is a 
3-Sylow subgroup of Gal(F/K ). In particular, F/F3 is a solvable extension. We shall shortly prove the following.

Lemma 3.2. The projective image H F3 := P(ρ E,p(G F3 )) is isomorphic to S4 or A4 . In particular, ρE,p(G F3 ) is big.

From this lemma and Theorem 4, it follows that E/F3 is modular. Finally, an application of Langlands solvable base 
change (see [6]) allows us to conclude that E/F is modular.

For the proof of Lemma 3.2, we will need the following elementary lemma from group theory.

Lemma 3.3. Let G be a profinite group. Let M ⊂ G be a subgroup of finite index i. Let N be a normal subgroup of G. Write j for the 
index of M/(N ∩ M) in G/N. Then j | i.

Proof. We prove it for the case of finite groups. The required divisibility follows from the following elementary equalities:

|G| = |N| · [G : N],
|M| = |N ∩ M| · [M : N ∩ M].

Dividing the first equality into the second, we conclude that j divides i. �
Proof of Lemma 3.2. Let F3 be as above and set

G := Gal(Q/K ), M := Gal(Q/F3), N := Ker(Pρ E,p).

Let L/K be the Galois extension fixed by N . Observe that L/L ∩ F3 is Galois and

G/N ∼= Gal(L/K ), M/(M ∩ N) ∼= Gal(L/L ∩ F3).

From Lemma 3.3, we see that
[
Gal(L/K ) : Gal(L/L ∩ F3)

] = j | i = [G : M]
and we also have

∣
∣Gal(L/K )

∣
∣ = j

∣
∣Gal(L/L ∩ F3)

∣
∣.

Note that Gal(L/L ∩ F3) ∼= H F3 . From the way we choose F3 it is clear that 3 � i, hence 3 � j. By hypothesis G/N ∼= S4 or A4, 
hence 3 divides | Gal(L/K )| and |H F3 |. Finally, the conditions 3 | |H F3 | and D4 ⊂ H F3 together imply that H F3 is isomorphic 
to S4 or A4. �

We summarize this section into the following corollary.

Corollary 3.4. Let F/K be a finite Galois extension of totally real fields. Let E/K be an elliptic curve. Suppose that for p = 3, 5 or 7 we 
have that ρE,p(G K ) is big and solvable. Suppose further that P(ρE,p(G K )) ∼= S4 or A4 . Then E/F is modular.

Everything we have done so far works for any Galois extension F/K . Moreover, it is clear that the remaining cases are 
those when ρ E,p(G K ) is small or projectively dihedral simultaneously for p = 3, 5, 7. The restriction in the statement of 
Theorem 3 to quadratic fields arises precisely from dealing with them, which is the content of the next section.
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4. Elliptic curves having small or projective Dihedral image at p = 3, 5 and 7

Let K be a real quadratic field. From Theorem 4 an elliptic curve E/K is modular over K except possibly if ρ E,p(G K )

is small simultaneously for p = 3, 5, 7. Suppose K �= Q(
√

5). In [3], it is shown that such an elliptic curve gives rise to a 
K -point on one of the following modular curves:

X(b5,b7), X(b3, s5), X(s3, s5),

X(b3,b5,d7), X(s3,b5,d7), X(b3,b5,e7), X(s3,b5,e7),

where b and s respectively stand for ‘Borel’ and ‘normalizer of split Cartan’. The notation d7 and e7 is explained in [3, Sec-
tion 10]; here we remark only that they indicate mod 7 level structures that are respectively finer than ‘normalizer of split 
Cartan’ and ‘normalizer of non-split Cartan’. Denote by EK the set of elliptic curves (up to quadratic twist) corresponding to 
K -points in the previous modular curves. In [3] it is also shown that an elliptic curve E/Q(

√
5) with simultaneously small 

image for p = 3, 5, 7 gives rise to a Q(
√

5)-point in one of the following modular curves:

X(d7), X(e7), X(b3,b7), X(s3,b7).

Denote by E
Q(

√
5)

the set of elliptic curves (up to quadratic twist) corresponding to Q(
√

5)-points in these four modular 
curves.

Furthermore, it also follows from [3] that, for any real quadratic field K , we have:

(i) EK contains all elliptic curves (up to quadratic twist) with small or projective dihedral image simultaneously at p =
3, 5, 7;

(ii) EK is finite;
(iii) let E ∈ EK . Then, either E is a Q-curve or E has complex multiplication or ρ̄E,7(G K ) contains SL2(F7).

We can now easily prove the following.

Corollary 4.1. Let K be a real quadratic field. Let E ∈ EK . Let F/K be a finite totally real Galois extension. Then E/F is modular.

Proof. From (iii) above, we know that either (a) E/K is a Q-curve or has complex multiplication or (b) ρ̄E,7(G K ) is non-
solvable. Suppose we are in case (a). Base change follows from [5, Proposition 12.1] in the CM case; if E is a Q-curve, by 
results of Ribet and Serres’ conjecture (now a theorem due to Khare–Wintenberger), it arises from a classical modular form 
thus base change follows by Theorem 1. In case (b), it follows from Corollary 2.2 that E/F is modular. �
5. Proof of the main theorem

Let K be a real quadratic field and E/K an elliptic curve. Write ρ̄p = ρ̄E,p . The curve E/K must satisfy at least one of 
the following three cases:

(1) ρ̄p(G K ) is big and non-solvable for some p ∈ {3, 5, 7},
(2) ρ̄p(G K ) is big, solvable and satisfy P(ρ̄p(G K )) ∼= S4, A4 for some p ∈ {3, 5, 7},
(3) E/K belongs to the set EK .

Let F/K be a totally real finite Galois extension. In each case, modularity of E/F now follows directly from one of the 
previous sections:

Case (1): this is Corollary 2.2.
Case (2): this is Corollary 3.4.
Case (3): this is Corollary 4.1. �
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