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We investigate complete and compact subsets for the lower, upper and symmetric 
topologies of a locally convex cone and prove that weakly closed sets will be weakly 
compact, whenever they are weakly precompact. This leads to the weak* compactness of 
the polars of neighborhoods and weak compactness of the lower, upper and symmetric 
neighborhoods.
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r é s u m é

Nous étudions des sous-ensembles complets et compacts pour le bas, le haut et les 
topologies symétriques d’un cône localement convexe, et prouvons que les ensembles 
faiblement fermés sont faiblement compacts à chaque fois qu’ils sont faiblement pré-
compacts. Cela conduit à la faible* compacité des polaires des quartiers et à la faible 
compacité des quartiers inférieur, supérieur et symétrique.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The theory of locally convex cones is based on order theoretical notions from which certain topological structures are 
defined. With these structures, a cone carries three topologies called lower, upper and symmetric topologies. In particular, a 
locally convex (ordered) topological vector space is a locally convex cone, and the above three topologies coincide with the 
given topology. Many basic order and topological properties have been established so far for locally convex cones (see for 
example [1,3–5]). The aim of this paper is the study of completeness and compactness for the above-mentioned topologies. 
In Section 2, we study the relations between compact and complete subsets. In Section 3, we discuss the weak completeness 
and compactness of weakly closed sets and show that the polar of each neighborhood is weak* compact in the upper 
topology, and for its compactness in the lower (symmetric) topology, the upper (respectively, symmetric) precompactness 
is necessary. Also, using the strict separation property, one can show that every lower (upper and symmetric) precompact 
neighborhood is weakly upper (respectively, lower and symmetric) compact.

An ordered cone is a set P endowed with an addition (a, b) �−→ a + b and a scalar multiplication (α, a) �−→ αa for real 
numbers α ≥ 0. The addition is supposed to be associative and commutative, there is a neutral element 0 ∈ P , and for 

E-mail address: motallebi@uma.ac.ir.
http://dx.doi.org/10.1016/j.crma.2014.09.005
1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2014.09.005
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:motallebi@uma.ac.ir
http://dx.doi.org/10.1016/j.crma.2014.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2014.09.005&domain=pdf


786 M.R. Motallebi / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 785–789
the scalar multiplication, the usual associative and distributive properties hold, that is, α(βa) = (αβ)a, (α + β)a = αa + βa, 
α(a + b) = αa + αb, 1a = a, 0a = 0 for all a, b ∈ P and α, β ≥ 0. In addition, the cone P carries a (partial) order, i.e., 
a reflexive transitive relation ≤ that is compatible with the algebraic operations, that is a ≤ b implies a + c ≤ b + c and 
αa ≤ αb for all a, b, c ∈P and α ≥ 0. For example, the extended scalar field R = R ∪ {+∞} of real numbers is a preordered 
cone. We consider the usual order and algebraic operations in R; in particular, α + ∞ = +∞ for all α ∈ R, α · (+∞) = +∞
for all α > 0 and 0 · (+∞) = 0. In any cone P , equality is obviously such an order, hence all results about ordered cones 
apply to cones without order structures as well.

A full locally convex cone (P, V) is an ordered cone P that contains an abstract neighborhood system V , i.e., a subset 
of positive elements that is directed downward, closed for addition and multiplication by (strictly) positive scalars. The 
elements v of V define upper (lower) neighborhoods for the elements of P by v(a) = {b ∈ P : b ≤ a + v} (respectively, 
(a)v = {b ∈ P : a ≤ b + v}), creating the upper, respectively lower topologies on P . Their common refinement is called the 
symmetric topology. We assume all elements of P to be bounded below, i.e., for every a ∈ P and v ∈ V we have 0 ≤ a + ρv
for some ρ > 0. Finally, a locally convex cone (P, V) is a subcone of a full locally convex cone, not necessarily containing the 
abstract neighborhood system V .

For a locally convex cone (P, V), the collection of all sets ṽ ⊆ P2, where ṽ = {(a, b) : a ≤ b + v} for all v ∈ V , defines a 
convex quasi-uniform structure on P . On the other hand, every convex quasi-uniform structure leads to a full locally convex 
cone, including P as a subcone, and induces the same convex quasi-uniform structure. For details, see [1, Ch. I, 5.2].

2. Completeness

Let (xα)α∈I be a net in (P, V) and x ∈ P . We write xα ↓ x (xα ↑ x) if (xα)α∈I converges to x with respect to the lower 
(respectively, upper) topology. Also xα → x means that xα ↑ x and xα ↓ x, i.e., (xα)α∈I converges to x with respect to the 
symmetric topology. We call (xα)α∈I in (P, V) to be lower (upper) Cauchy if, for every v ∈ V , there is some αv ∈ I such 
that xβ ≤ xα + v (respectively, xα ≤ xβ + v) for all α, β with β ≥ α ≥ αv . Also (xα)α∈I is called symmetric Cauchy if it is 
lower and upper Cauchy, i.e., if, for each v ∈ V , there is some αv ∈ I such that xβ ≤ xα + v and xα ≤ xβ + v for all α, β
with α, β ≥ αv . A locally convex cone (P, V) is called lower (upper and symmetric) complete if every lower (respectively, 
upper and symmetric) Cauchy net converges in the lower (respectively, upper and symmetric) topology. In general, a set 
A ⊂ P is called lower (upper and symmetric) complete if every lower (respectively, upper and symmetric) Cauchy net is 
convergent to an element of A in the corresponding topology. Note that if a locally convex cone is symmetric complete, it 
is not necessary it be both lower and upper complete. For details see [3, Example 2.9].

Recall that a net (yλ)λ∈Λ is a subnet of a net (xα)α∈I if there exists a function ϕ : Λ → I such that yλ = xϕλ for each 
λ ∈ Λ, where ϕλ stands for ϕ(λ); and for each α0 ∈ I there exists some λ0 ∈ Λ such that λ ≥ λ0 implies ϕλ ≥ α0. A net 
(xα)α∈I in a set X is said to be an ultranet if, for every subset A of X , either (xα)α∈I is eventually in A or (xα)α∈I is 
eventually in X \ A. Every net has a subnet which is an ultranet [6, Ch. 4, 11]. If an ultranet (xα)α∈I is eventually in ⋃n

i=1 Ai , then it will be eventually in Ai for some i. For, if not, (xα)α∈I will be eventually in X \ Ai for each i, and so 
xα ∈ (

⋃n
i=1 Ai) ∪ (X \ ⋃n

i=1 Ai) eventually, which is a contradiction.
We say that a set A ⊂ (P, V) is symmetric precompact (or uniformly precompact), if for every v ∈ V , there are elements 

a1, ..., an ∈ A such that A ⊂ ⋃n
i=1 v(ai)v , i.e., if for each v ∈ V there exist subsets A1, ..., An ⊂ P such that A ⊂ ⋃n

i=1 Ai and 
Ai × Ai ⊂ ṽ , i = 1, 2, ..., n. Also, a set A ⊂ (P, V) is called upper (lower) precompact, if for every v ∈ V and every subset S
of A there are elements s1, ..., sn ∈ S such that A ⊂ ⋃n

i=1 v(si) (respectively, A ⊂ ⋃n
i=1(si)v). Note that every symmetric 

precompact set is both lower and upper precompact. But the lower or upper precompact sets need not be the symmetric 
precompact; for example in (R, ε), where ε = {ε : ε > 0} the intervals (−∞, a], a ∈R are upper precompact but not lower or 
symmetric precompact. Obviously, every subset of a symmetric (upper or lower) precompact set is again symmetric (upper 
or lower) precompact.

Lemma 2.1. For A ⊆P , we have

(a) A is lower precompact if and only if every ultranet in A has an upper Cauchy subnet,
(b) A is upper precompact if and only if every ultranet in A has a lower Cauchy subnet,
(c) A is symmetric precompact if and only if every ultranet in A is symmetric Cauchy.

Proof. (a) Let A be lower precompact and (xα)α∈I be an ultranet in A. If, for each α0 ∈ I , we put Sα0 = {xα : α ≥ α0}, 
then Sα0 will be lower precompact; so, for each α0 ∈ I and v ∈ V , there is a finite subset Δα0,v of I such that 
Sα0 ⊂ ⋃

α∈Δα0,v
(xα)v , which implies that Sαv ⊂ (xαv )v for some αv ∈ Δα0,v . We set Λ = {(αv , (xαv )v) : αv ∈ Δα0,v where

α0 ∈ I, v ∈ V} and order Λ as follows (αv , (xαv )v) ≤ (αu, (xαu )u) if and only if αv ≤ αu and u ≤ v . This is easily verified to 
be a direction on Λ and the function ϕ : Λ → I such that ϕ((αv , (xαv )v)) = αv for all v ∈ V defines a subnet (xαv )v∈V of 
(xα)α∈I . Suppose u, v, w ∈ V such that αw ≥ αu ≥ αv . Then we have w ≤ u ≤ v and Sαw ⊆ Sαu ⊆ Sαv , which implies that 
xαu ≤ xαw + u ≤ xαw + v , i.e., (xαv )v∈V is upper Cauchy. Conversely, suppose that every ultranet in A has an upper Cauchy 
subnet, but that A is not lower precompact. There is v ∈ V such that A has no finite covering 

⋃n
i=1(ai)v with ai ∈ A, n ∈N. 

Then we can find a sequence (an)n∈N in A such that for each n ∈ N, an+1 /∈ ⋃n
i=1(ai)v . Clearly, (an)n∈N does not have an 

upper Cauchy subnet, which is a contradiction. In the similar way, we prove (b).



M.R. Motallebi / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 785–789 787
Half of part (c) is similar to (a). Conversely, suppose that A is symmetric precompact and let (xα)α∈I be an ultranet 
in A. For every v ∈ V , there are a1, a2, ..., an ∈ A such that A ⊆ ⋃n

i=1 v/2(ai)v/2, which yields xα ∈ v/2(ai)v/2 eventually 
for some i. That is, there exists some αv ∈ I such that xα ∈ v(xβ)v for all α, β ∈ I satisfying α, β ≥ αv , i.e., (xα)α∈I is 
symmetric Cauchy. �
Theorem 2.2. For a topological space X, the following are equivalent;

(a) A ⊆ X is compact,
(b) every net in A has a subnet which is convergent to an element of A,
(c) every ultranet in A is convergent to an element of A.

Proof. See [6, Ch. 6, Theorem 17.4]. �
Theorem 2.3. Let (P, V) be a locally convex cone and A ⊆P . Then

(a) if A is lower precompact and upper complete, then it will be upper compact,
(b) if A is upper precompact and lower complete, then it will be lower compact,
(c) if A is lower (upper) compact, then it will be lower (respectively, upper) complete,
(d) A is symmetric compact if and only if it is symmetric precompact and symmetric complete.

Proof. (a) If A is lower precompact and upper complete then, by Lemma 2.1 and Theorem 2.2, it will be upper compact. 
Similarly, Parts (b) and (d) follow from Lemma 2.1 and Theorem 2.2. For (c), let A be lower compact, (xα)α∈I be a lower 
Cauchy net in A and (xαλ)λ∈Λ be a subnet of (xα)α∈I , which is an ultranet. By Lemma 2.1, there is some x ∈ A such that 
xαλ ↓ x then, for every v ∈ V , there is λv ∈ Λ such that x ≤ xαλ + v/2 for all λ ≥ λv . Since (xα)α∈I is lower Cauchy, there 
is α0 ≥ αλv such that xβ ≤ xα + v/2 for all β ≥ α ≥ α0. Let β ≥ α0 and choose λ ∈ Λ such that λ ≥ λv and αλ ≥ β . Then 
x ≤ xαλ + v/2 ≤ xβ + v/2 + v/2, i.e., xα ↓ x, that is, A is lower complete. �
3. Weak compactness and neighborhoods

A dual pair (P, Q) consists of two cones P and Q with a bilinear mapping (a, x) �−→ 〈a, x〉 : P × Q −→ R. Let (P, Q)

be a dual pair and X be a collection of subsets of Q such that:

(p0) inf{〈a, x〉 : x ∈ A} > −∞ for all a ∈P and A ∈ X .
(p1) λA ∈ X for all A ∈ X and λ > 0.
(p2) for all A, B ∈ X there is some C ∈ X such that A ∪ B ⊆ C .

For each A ∈ X , we define UA = {(a, b) ∈ P × P : 〈a, x〉 ≤ 〈b, x〉 + 1 for all x ∈ A}. The set of all UA , A ∈ X forms a convex 
quasi-uniform structure with property (U5) in [1, Ch. I, 5.2] and defines a locally convex structure on P . This is called the 
X-topology on P . For each A ∈ X , we denote by v A the abstract neighborhood induced on P by UA . Therefore (a, b) ∈ UA if 
and only if a ≤ b + v A . For details, see [1, Ch. II, 3].

For every finite subset B = {x1, x2, ..., xn} of Q, let us denote by QB the subcone of Q generated by B , that is, QB =
{∑m

i=1 αi xi : xi ∈ B, αi ≥ 0, 1 ≤ m ≤ n}. If XB is the set of all finite subsets of QB , the resulting XB -topology on P is called 
the weak topology σ(P, QB). In particular, the weak topologies σ(P, Qx) for all x ∈Q are the coarsest ones for this duality. 
If X = ⋃

x∈X Xx , then X consists of the all finite subsets of Q and the X-topology will be the weak topology σ(P, Q).
The set A ⊂ (P, V) is called lower (upper) bounded, if for every v ∈ V , there is some λ > 0 such that 0 ≤ A + λv (respec-

tively, A ≤ λv). Also, A is called bounded, if it is both lower and upper bounded, that is, there is some λ > 0 such that A ≤ λv
and 0 ≤ A +λv . It is easy to see that, in a dual pair (P, Q), a set A ⊆ P is σ(P, Q)-bounded whenever for every finite sub-
set B of Q, −∞ < inf〈A, B〉 ≤ sup〈A, B〉 < +∞, where 〈A, B〉 = {〈a, x〉 : a ∈ A, x ∈ B}. Likewise, A is σ(P, Q)-lower (upper) 
bounded if, for every finite subset B of Q, inf〈A, B〉 > −∞ (respectively, sup〈A, B〉 < +∞). If A ⊆ P is σ(P, Q)-symmetric 
precompact, then it will be σ(P, Q)-lower bounded. For, let x ∈ Q. There are a1, ..., an ∈ A such that A ⊆ ⋃n

i=1 vx(ai)vx . If 
we choose λ > 0 such that 0 ≤ ai + λvx , then we imply that 0 ≤ A + λvx , i.e., A is σ(P, Q)-lower bounded.

Proposition 3.1. If A ⊆P is σ(P, Q)-bounded, then it will be σ(P, Q)-symmetric precompact.

Proof. See [2, Proposition 2.21]. �
Proposition 3.2. If A ⊆P is σ(P, Q)-upper (lower) bounded, then it will be σ(P, Q)-upper (respectively, lower) precompact.

Proof. Let A be σ(P, Q)-upper bonded and B be a finite subset of Q. Fix a0 ∈ A and put λ = min〈B, a0〉. If we put 
A0 = {a ∈ A : 〈a, a0〉 ≤ λ}, then A0 ⊆ v B(a0), i.e., A0 is the σ(P, QB)-upper precompact. Also, A \ A0 = {a ∈ A : 〈a,a0〉 > λ}
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is σ(P, QB)-lower bounded, hence by Proposition 3.1, it will be σ(P, QB)-upper precompact. Thus, as the union of 
two σ(P, QB)-upper precompact sets, A will be σ(P, QB)-upper precompact for all finite subsets B of Q and so it is 
σ(P, Q)-upper precompact. �

Let (P, Q) be a dual pair and X be a collection of subsets of Q satisfying (p0), (p1) and (p2). If (xα)α∈I is a net 
in (P, VX ) and a ∈ P , then xα ↑ a (respectively, xα ↓ a and xα → a) in (P, VX ) if and only if 〈xα, x〉 ↑ 〈a, x〉 (respectively, 
〈xα, x〉 ↓ 〈a, x〉 and 〈xα, x〉 → 〈a, x〉) in (R, ε) for all x ∈ A and A ∈ X . For, if xα ↑ a and A ∈ X , there is some αA ∈ I such 
that xα ≤ a + v A for all α ≥ αA or 〈xα, x〉 ≤ 〈a, x〉 + 1 for all x ∈ A, i.e., 〈xα, a〉 ↑ 〈a, x〉 in (R, ε) for all x ∈ A. In particular, if 
Q = ⋃

A∈X A, then, for all a ∈P , xα ↑ a in X-topology if and only if 〈xα, a〉 ↑ 〈x, a〉 in (R, ε) for all x ∈P .

Proposition 3.3. If (P, Q) is a dual pair and A ⊆P , then

(a) if A is closed with respect to the σ(P, Q)-lower (upper) topology, then it will be σ(P, Q)-upper complete,
(b) if A is σ(P, Q)-lower bounded and closed with respect to the σ(P, Q)-upper (lower) topology, then it will be σ(P, Q)-lower 

complete,
(c) if A is closed with respect to the σ(P, Q)-symmetric topology, then it will be σ(P, Q)-symmetric complete.

Proof. According to [2, Proposition 2.10], it is enough to prove the statements of the theorem for σ(P, Qx)-topologies for 
all x ∈ Q. Let us denote by Ax, Ax and As

x , the closure of A in the lower, upper and symmetric topology of σ(P, Qx), 
respectively. For (a), let (yα)α∈I be a net in A. If, for each x ∈ Q, we set 〈y, x〉 = supα∈I〈yα, x〉 then yα ≤ y + vx for 
all α ∈ I , that is, yα ↑ y in σ(P, Qx), hence y ∈ Ax . Fix x ∈ Q. If supα∈I〈yα, x〉 = +∞, then 〈yα, x〉 = +∞ for some 
α ∈ I , which yields y ≤ yα + vx , that is, y ∈ Ax . Suppose that supα∈I〈yα, x〉 < +∞. There is some αx ∈ I such that 
〈yαx , x〉 > 〈y, x〉 − 1, i.e., y ≤ yαx + vx , that is, y ∈ Ax . Part (b) is proved in the similar way. For (c), let (yα)α∈I be a 
symmetric Cauchy net in A. For every x ∈ Q, there is some αvx ∈ I such that yα ≤ yβ + vx and yβ ≤ yα + vx for all 
α, β ∈ I with α, β ≥ αvx . This implies that −∞ < infα∈I〈yα, x〉 ≤ supα∈I〈yα, x〉 ≤ infα∈I〈yα, x〉 < +∞. If we set 〈y, x〉 =
supα∈I〈yα, x〉 = infα∈I〈yα, x〉, then yα → y in σ(P, Q), hence y ∈ As

x . �
As a consequence of Theorem 2.3 and Proposition 3.3, we have:

Theorem 3.4. If (P, Q) is a dual pair and A ⊆Q, then

(a) if A is closed in the σ(P, Q)-lower (upper) topology and is σ(P, Q)-lower precompact, then it will be σ(P, Q)-upper compact,
(b) if A is lower bounded and is closed in the σ(P, Q)-upper (lower) topology and is σ(P, Q)-upper precompact, then it will be 

σ(P, Q)-lower compact,
(c) if A is closed in the σ(P, Q)-symmetric topology and is σ(P, Q)-symmetric precompact, then it will be σ(P, Q)-symmetric 

compact.

In a locally convex cone (P, V), the polar v◦ of v ∈ V consists of all linear functionals μ on P satisfying μ(a) ≤ μ(b) +1, 
whenever a ≤ b + v for a, b ∈ P . The union of all polars of neighborhoods forms the dual cone P∗ of P . The functionals 
belonging to P∗ are said to be (uniformly) continuous. The polar v◦ of a neighborhood v ∈ V is seen to be w(P∗, P)-compact 
and convex, where w(P∗, P) denotes the topology of pointwise convergence of the elements of P , considered as functions on 
P∗ with values in R with its usual topology [1, Ch. II, 2.4]. For compactness of v◦ in the weak topology σ(P∗, P), we have:

Corollary 3.5. If (P, V) is a locally convex cone and v ∈ V then,

(a) the polar v◦ is σ(P∗, P)-upper compact,
(b) the polar v◦ will be σ(P∗, P)-lower compact, whenever it is σ(P∗, P)-upper precompact,
(c) the polar v◦ will be σ(P∗, P)-symmetric compact, whenever it is σ(P∗, P)-symmetric precompact.

Proof. It is easy to see that v◦ is closed in both σ(P∗, P)-lower and symmetric topologies. Thus, (b) holds by Theo-
rem 3.4(b). Let B be a finite subset of P and choose λ > 0 such that 0 ≤ x + λv for all x ∈ B . Then 0 ≤ μ(x) + λ for all 
μ ∈ v◦ , that is, 0 ≤ v◦ + λv B or v◦ is σ(P∗, P)-lower bounded, hence it is precompact by Proposition 3.2. Thus (a) and (c) 
hold by parts (a) and (c) of Theorem 3.4. �
Remark 1. If all of the elements of (P, V) are bounded, then the polar v◦ of v will be σ(P∗, P)-symmetric compact. For, if 
B is a finite subset of P , then we have v◦ ≤ λv B for some λ > 0, that is, v◦ is σ(P∗, P)-bounded. Hence, by Proposition 3.1
and Corollary 3.5, it will be σ(P∗, P)-symmetric compact.

A locally convex cone (P, V) is said to have the strict separation property, if for all a, b ∈ P and v ∈ V with a � b + ρv
for some ρ > 1, there is a μ ∈ v◦ such that μ(a) > μ(b) + 1. Every locally convex cone (P, V) has the X-topology, where 
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X = {v◦ : v ∈ V} and (P, V) will be equivalent to (P, VX ), whenever it carries the strict separation property; in fact, ṽ ⊆
Uv◦ ⊆ 2 ̃v for all v ∈ V [1, II, 3.3]. Hence Corollary 3.5(a) yields:

Corollary 3.6. If (P, V) has the strict separation property, then it will be equivalent to the X-topology of all σ(P∗, P)-upper compact 
sets v◦, v ∈ V .

In the condition of the strict separation property, we find a base for each upper, lower and symmetric topology such 
that the elements of the base for the upper topology are closed in the lower one, and the elements of the base for the 
lower topology are closed in the upper one, in particular, the elements of the base for the symmetric topology are closed. 
Indeed, for every v ∈ V , we have v(a) ⊆ v v◦ (a) ⊆ (2v)(a) and v v◦(a) is closed in the lower topology; for, if (xα)α∈I is 
a net in v v◦(a) such that xα ↓ x then we have μ(xα) ↓ μ(x) for all μ ∈ v◦ , since μ is continuous in the lower topol-
ogy. Thus μ(x) ≤ μ(a) + 1 for all μ ∈ v◦ , that is, x ≤ a + v v◦ or x ∈ v v◦ (a). In particular, for an X-topology (P, VX ), the 
lower (upper and symmetric) neighborhoods are closed in the upper (respectively, lower and symmetric) topology. Now, by 
[2, Proposition 2.10], Corollary 3.6 and Theorem 3.4 we have:

Corollary 3.7. If (P, V) has the strict separation property, then

(a) the lower precompact neighborhoods of the lower topology are σ(P, P∗)-upper compact,
(b) the upper precompact neighborhoods of the upper topology are σ(P, P∗)-lower compact,
(c) the symmetric precompact neighborhoods of the symmetric topology are σ(P, P∗)-symmetric compact.

We may also consider the local lower, upper and symmetric neighborhoods of a locally convex cone P that arise if we 
endow P with the neighborhood subsystem Vv = {αv : α ≥ 0} consisting of the multiples of a single neighborhood v ∈ V . 
Obviously, the dual cone P∗

v of (P, Vv ) consists only of the multiples of the functionals in v◦ [5, Ch. I, 4]. If b ∈ P and 
μ ∈ P∗

v , then 0 ≤ b + ρv and μ ∈ ρv◦ for some ρ > 0, which yields 0 ≤ (b)v + ρ2 vμ hence, by Proposition 3.2, the lower 
neighborhood (b)v is σ(P, P∗)-lower precompact. Similarly, if an element b of P is v-bounded, the upper (symmetric) 
neighborhoods of b will be σ(P, P∗)-upper (respectively, symmetric) precompact. Hence we have:

Corollary 3.8. For v ∈ V , if (P, Vv) has the strict separation property, then

(a) the lower neighborhoods of P are σ(P, P∗
v )-upper compact,

(b) the upper neighborhoods of the bounded elements of P are σ(P, P∗
v )-lower compact,

(c) the symmetric neighborhoods of the bounded elements of P are σ(P, P∗
v )-symmetric compact.

Remark 2. (i) If (P, V) has the strict separation property and A ⊂ P is upper (lower and symmetric) precompact, then the 
closure of A with respect to the lower (respectively, upper and symmetric) topology will be upper (respectively, lower and 
symmetric) precompact. For, if A is upper precompact, then, for each v ∈ V and each subset S of A, there are s1, ..., sn ∈ S
such that S ⊂ ⋃n

i=1 1/2v(si), which implies that S ⊆ ⋃n
i=1 v(si), since 1/2v(si) ⊆ v(1/2v)◦ (si) ⊆ v(si), that is, A is upper 

precompact. Therefore, according to [2, Proposition 2.10] and Theorem 3.4, the closure A will be σ(P, P∗)-upper compact, 
whenever A is lower bounded, and the closure A will be σ(P, P∗)-lower compact, whenever A is both lower bounded and 
upper precompact; also, if A is bounded or symmetric precompact, then As will be symmetric compact. In particular, for 
every a ∈P , the closure a is upper compact and as is symmetric compact.

(ii) If A ⊆ P∗ is equicontinuous, the closure of A in the upper topology will be σ(P∗, P)-upper compact; for, A ⊆ v◦

for some v ∈ V [2, 2.5], hence by (i) and Proposition 3.1, A is σ(P∗, P)-lower precompact, since v◦ is σ(P∗, P)-lower 
bounded. Thus, by Theorem 3.4, A is σ(P∗, P)-upper compact.
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