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the induced metric on the boundary of the subset coincides with a prescribed hyperbolic 
polyhedral metric.
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r é s u m é

On demontre l’existence d’un sous-ensemble convexe compact dans une variété quasi-
fuchsienne tel que la métrique induite de bord du sous-ensemble soit une métrique 
polyèdrale hyperbolique prescrite.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

First, let us recall one classical theorem due to A.D. Alexandrov, which concerns the realization of polyhedral surfaces in 
the spaces of constant curvature. As in [2], R K stands for a spherical 3-space of curvature K in the case K > 0; R K stands 
for a hyperbolic 3-space of curvature K when K < 0; in the case K = 0, R K denotes a Euclidean 3-space. Then the result of 
A.D. Alexandrov reads as follows:

Theorem 1.1. Let h be a metric of a constant sectional curvature K with cone singularities on a sphere S2 such that the total angle 
around every singular point of h does not exceed 2π . Then there exists a closed convex polyhedron (polyhedral surface) in R K such that 
its induced metric coincides with h. This polyhedron is unique up to the isometries of R K . Here we include the doubly covered convex 
polygons, which are plane in R K , in the set of convex polyhedra.

E-mail address: slutskiy@math.unistra.fr.
http://dx.doi.org/10.1016/j.crma.2014.09.001
1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2014.09.001
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:slutskiy@math.unistra.fr
http://dx.doi.org/10.1016/j.crma.2014.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2014.09.001&domain=pdf


832 D. Slutskiy / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 831–834
Next, following [4], we say that a compact hyperbolic manifold M is strictly convex if any two points in M can be joined 
with a minimizing geodesic that lies inside the interior of M . This condition implies that the intrinsic curvature of ∂M is 
greater than −1 everywhere (the term “hyperbolic” means for us “of a constant curvature equal to −1 everywhere”).

In 1992 F. Labourie [4] proved the following theorem.

Theorem 1.2. Let M be a compact manifold with boundary (different from the solid torus) that admits the structure of a strictly convex 
hyperbolic manifold. Let h be a C∞-regular metric on ∂M of a sectional curvature that is strictly greater than −1 everywhere. Then 
there exists a convex hyperbolic metric g on M that induces h on ∂M.

Jean-Marc Schlenker [6] demonstrated the uniqueness of the metric g in Theorem 1.2.
Our main goal is to obtain the following extension of Theorem 1.2, which can also be considered as an analogue of 

Theorem 1.1 for the convex hyperbolic manifolds with polyhedral boundary.

Theorem 1.3. Let M be a compact connected 3-manifold with boundary of the type S×[−1, 1] where S is a closed connected surface 
of genus at least 2. Let h be a hyperbolic metric with cone singularities of angle less than 2π on ∂M such that every singular point of 
h possesses a neighborhood in ∂M that does not contain other singular points of h. Then there exists a hyperbolic metric g in M with 
a convex boundary ∂M such that the metric induced on ∂M is h.

We say that the manifold M from the statement of Theorem 1.3 admits a structure of a quasi-Fuchsian convex compact 
manifold.

At last, recall that a pleated surface [3] in a hyperbolic 3-manifold M is a complete hyperbolic surface S together with an 
isometric map f : S → M such that every s ∈ S is in the interior of some geodesic arc that is mapped by f to a geodesic 
arc in M.

A pleated surface resembles a polyhedron in the sense that it has flat faces that meet along edges. Unlike a polyhedron, 
a pleated surface has no vertices, but it may have infinitely many edges that form a lamination.

Remark 1. The surfaces serving as the connected components of the boundary ∂M of the manifold M from the statement 
of Theorem 1.3, which are equipped by assumption with hyperbolic polyhedral metrics, do not necessarily have to be 
polyhedra embedded in M: these surfaces can be partially pleated.

2. Outline of the proof of Theorem 1.3

Introducing more convenient notations, we clarify that in Theorem 1.3 we want to show that there exists a quasi-Fuchsian 
manifold M◦∞:

• which contains a convex compact domain M∞ ⊂M◦∞ ,
• such that the induced metrics of the connected components S+∞ and S−∞ of ∂M∞ coincide with the prescribed hyper-

bolic polyhedral metrics h+∞ and h−∞ .

Remark 2. S+∞ and S−∞ are topologically the same surface S from the statement of Theorem 1.3.

First, we construct two sequences of C∞-metrics {h+
n }n∈N and {h−

n }n∈N on S of sectional curvature strictly greater than 
−1 everywhere, which converge to h+∞ and h−∞ as n → ∞. Then, by Theorem 1.2, for any n ∈ N, there is a convex compact 
domain Mn in a quasi-Fuchsian manifold M◦

n equipped with a hyperbolic metric gn such that the induced metrics of the 
boundary components S+

n and S−
n of ∂Mn

def= S+
n ∪ S−

n are exactly h+
n and h−

n .
Note that the universal coverings M̃◦

n of the quasi-Fuchsian manifolds M◦
n are copies of the hyperbolic 3-space 

H
3, n ∈ N. Thus, we may consider the holonomy representations ρS

n : π1(S) → I(M̃◦
n)(= I(H3)) such that M◦

n =
M̃◦

n/[ρS
n (π1(S))] = H

3/[ρS
n (π1(S))], and moreover such that the universal coverings M̃n , S̃+

n , and S̃−
n of the domains Mn

and of the surfaces S+
n and S−

n , n ∈ N, satisfy the following conditions: Mn = M̃n/[ρS
n (π1(S))], S+

n = S̃+
n /[ρS

n (π1(S))], 
and S−

n = S̃−
n /[ρS

n (π1(S))]. Here the surfaces S̃+
n and S̃−

n are the connected components of the boundary of a convex 
domain M̃n in H3. Note also that the induced metrics g̃n , h̃+

n , and h̃−
n of M̃n , S̃+

n , and S̃−
n in H3 are the pull-backs of the 

metrics gn , h+
n , and h−

n of Mn , S+
n , and S−

n , respectively.
Let S̃+ and S̃− be two copies of the universal covering of the surface S . Then we can introduce the developing maps 

f̃S̃+
n

: S̃+ → S̃+
n and f̃S̃−

n
: S̃− → S̃−

n . Consider some special neighborhoods of �̂+ ⊂ S̃+ and �̂− ⊂ S̃− of two special 
fundamental domains �+ ⊂ S̃+ and �− ⊂ S̃− of the surface S . Then we can show Lemma 2.1.

Lemma 2.1. For each n ∈ N, both domains �̂+
n

def= f̃S̃+
n
(�̂+) ⊂ S̃+

n ⊂ H
3 and �̂−

n
def= f̃S̃−

n
(�̂−) ⊂ S̃−

n ⊂ H
3 are included in a hyper-

bolic ball of radius ρ which does not depend on n.
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Lemma 2.1 helps us to apply Arzelà–Ascoli Theorem in order to obtain:

Lemma 2.2. There exist subsequences of functions { f̃S̃+
nk

: �̂+ → H
3}k∈N and { f̃S̃−

nk
: �̂− → H

3}k∈N that converge to continuous 

functions f̃S̃+∞ : �̂+ → H
3 and f̃S̃−∞ : �̂− → H

3 , respectively.

From this point on, we assume that the sequences of functions { f̃S̃+
n

: �̂+ → H
3}n∈N and { f̃S̃−

n
: �̂− → H

3}n∈N converge 
to continuous functions f̃S̃+∞ : �̂+ → H

3 and f̃S̃−∞ : �̂− →H
3.

Recall now that hyperbolic isometries {ϑn ∈ I(H3)}n∈N converge to an isometry ϑ∞ ∈ I(H3) (we denote it by ϑn → ϑ∞) 
if for any point y ∈ H

3 the sequence {ϑn.y}n∈N converges to the point ϑ∞.y ∈H
3 as n → ∞.

We can prove:

Lemma 2.3. There is a subsequence of morphisms {ρS
nk

: π1(S) → I(H3)}k∈N that converges to a morphism ρS∞ : π1(S) → I(H3), 
i.e. for every γ ∈ π1(S) there exists a hyperbolic isometry that we denote by ρS∞(γ ) such that ρS

nk
(γ ) → ρS∞(γ ) as k → ∞.

In what follows we assume that the sequence of holonomy representations {ρS
n : π1(S) → I(H3)}n∈N converges to a 

holonomy representation ρS∞ : π1(S) → I(H3) as n → ∞.
Now we can conclude that the following statement holds:

Lemma 2.4. The sequences of developing maps { f̃S̃+
n

: S̃+ → H
3}n∈N and { f̃S̃−

n
: S̃− → H

3}n∈N converge to continuous functions 
f̃S̃+∞ : S̃+ →H

3 and f̃S̃−∞ : S̃− →H
3 .

By construction, the surfaces S̃+∞
def= f̃S̃+∞ (S̃+) and S̃−∞

def= f̃S̃−∞ (S̃−) bound a convex domain M̃∞ in H3; also, they are 
invariant under the action of the group ρS∞(π1(S)) of isometries of H3, and their boundaries at infinity coincide with the 
limit set of ρS∞(π1(S)).

Another classical result due to A.D. Alexandrov [1] helps us to prove that the induced metrics of the surfaces S̃+∞ and 
S̃−∞ coincide with the pull-backs of the hyperbolic polyhedral metrics h+∞ and h−∞:

Theorem 2.5. If a sequence of closed convex surfaces Fn in H3 converges to a closed convex surface F and if two sequences of points 
Xn and Yn on Fn converge to two points X and Y of F , respectively, then the distances between the points Xn and Yn measured on 
the surfaces Fn converge to the distance between the points X and Y measured on F , i.e., dF (X, Y ) = limn→∞dFn (Xn, Yn).

Therefore, we can take the quasi-Fuchsian manifold M◦∞ mentioned in the beginning of Section 2 to be H3/ρS∞(π1(S)), 
and the convex compact domain M∞ ⊂M◦∞ to be M̃∞/ρS∞(π1(S)). �
3. Distance between boundary components of a convex compact domain in a quasi-Fuchsian manifold

The distance d(K, L) between subsets K and L of a set N is defined as follows: d(K, L) def= inf{dN (u, v)|u ∈ K, v ∈ L}, 
where dN (u, v) stands for the distance between points u and v in N .

The following result, which is essentially used in the demonstration of Lemma 2.1 from Section 2, is of independent 
interest as well:

Theorem 3.1. Given a convex bounded domain M with the upper boundary S+ and the lower boundary S− in a quasi-Fuchsian 
manifold M◦ . If the metric surface S+ possesses two homotopically different nontrivial closed simple intersecting curves c+

1 and c+
2

of the lengths l+1 and l+2 , and S− possesses two homotopically different nontrivial closed simple intersecting curves c−
1 and c−

2 of the 
lengths l−1 and l−2 such that c+

1 and c−
1 , as well as c+

2 and c−
2 , are homotopically equivalent pairs of curves in M, then the distance 

d(S+, S−) between S+ and S− is bounded from above by the constant:

d
(
S+,S−)

< max

{(
l+1 + l−1 + ln

2l+1
l−1

)
,

(
l+1 + l−1 + ln

2l−1
l+1

)
,

(
l+2 + l−2 + ln

2l+2
l−2

)
,

(
l+2 + l−2 + ln

2l−2
l+2

)
,

2 arcosh

[
cosh l+1 cosh

(
l+1 + arcosh

el+1 (l+1 )2

ε2
3

)]
,2 arcosh

[
cosh l−1 cosh

(
l−1 + arcosh

el−1 (l−1 )2

ε2
3

)]
,

2 arcosh

[
cosh l+2 cosh

(
l+2 + arcosh

el+2 (l+2 )2

ε2
3

)]
,2 arcosh

[
cosh l−2 cosh

(
l−2 + arcosh

el−2 (l−2 )2

ε2
3

)]}
,

where the symbol ε3 stands for the Margulis constant of hyperbolic space H3.
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Note that we do not require the regularity of surface metrics in Theorem 3.1.
In order to prove Theorem 3.1, we need the following version of Margulis lemma, adapted to quasi-Fuchsian isometries 

of H3 [5]:

Lemma 3.2. There is a universal constant ε3 > 0 such that, for any properly discontinuous subgroup Γ of the group I(H3) of isome-
tries of H3 , if two closed simple intersecting curves γ̃1 and γ̃2 of the manifold H3/Γ have lengths less than ε3 , then γ̃1 and γ̃2 are 
homotopically equivalent in H3/Γ .

The main idea of the proof of Theorem 3.1 is as follows: assuming that the distance between the surfaces S+ and S− in 
the quasi-Fuchsian manifold M◦ is big enough, we find a pair of closed simple intersecting curves in M◦ of lengths less 
than ε3, which are homotopically different. This leads us to a contradiction with Margulis lemma.

The detailed proofs of Theorems 1.3 and 3.1 are given in [7] (in English).
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