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Let Ω be a bounded and connected open subset of RN with a Lipschitz-continuous 
boundary ∂Ω , the set Ω being locally on one side of ∂Ω . It is shown in this Note 
that a fundamental characterization of the space L2(Ω) due to Jacques-Louis Lions is in 
effect equivalent to a variety of other properties. One of the keys for establishing these 
equivalences is a specific “approximation lemma”, itself one of these equivalent properties.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit Ω un ouvert borné et connesce de RN de frontière ∂Ω lipschitzienne, l’ensemble Ω
étant localement du même côté de ∂Ω . On montre dans cette Note qu’une caractérisation 
fondamentale de l’espace L2(Ω) due à Jacques-Louis Lions est en fait équivalente à 
un certain nombre d’autres propriétés. L’une des clés pour établir ces équivalences est 
un « lemme d’approximation » spécifique, qui constitue lui-même l’une de ces propriétés 
équivalentes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Definitions and notations

In what follows, N designates a fixed integer ≥ 2. Unless otherwise specified, Latin indices range in the set {1, 2, . . . , N}.
The notation V ′ designates the dual space of a topological vector space V and V ′ 〈·, ·〉V designates the duality between V ′

and V . Given a subspace W of a normed vector space V ,

W 0 := {
v ′ ∈ V ′; V ′

〈
v ′, w

〉
V = 0 for all w ∈ W

}
designates the polar set of W ; if V is a Hilbert space, W ⊥ designates the orthogonal complement of W .

Let Ω be an open subset of RN and let x = (xi) be a generic point in Ω . Partial derivative operators of the first order, 
in the classical sense or in the sense of distributions, are denoted ∂i := ∂/∂xi . The space of functions that are indefinitely 
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differentiable in Ω and have compact supports in Ω is denoted D(Ω) and the space of distributions on Ω is denoted D′(Ω). 
If f ∈ D′(Ω) and ϕ ∈ D(Ω), we also use the shorter notation f (ϕ) := D′(Ω)〈 f ,ϕ〉D(Ω) . The notations H1(Ω) and H1

0(Ω)

designate the usual Sobolev spaces, and the notation H−1(Ω) designates the dual space of H1
0(Ω) endowed with the norm 

of H1(Ω). Finally, we define the space

L2
0(Ω) :=

{
f ∈ L2(Ω);

∫
Ω

f dx = 0

}
.

Spaces of functions and vector fields defined over Ω are respectively denoted by italic capitals and boldface Roman 
capitals.

The gradient operator grad :D′(Ω) → D′(Ω) is defined for each f ∈D′(Ω) by

D′(Ω)〈grad f ,ϕ〉D(Ω) := −D′(Ω)〈 f ,divϕ〉D(Ω) for all ϕ ∈D(Ω).

Note that, when restricted to L2(Ω), the mapping grad : L2(Ω) → H−1(Ω) satisfies

H−1(Ω)〈grad f , v〉H 1
0(Ω) = −

∫
Ω

f div v dx for all f ∈ L2(Ω) and all v ∈ H 1
0(Ω).

This shows that the operator grad : L2
0(Ω) → H−1(Ω) is the dual operator of − div : H 1

0(Ω) → L2
0(Ω). It also easily implies 

that, if the open set Ω is connected, the operator grad : L2
0(Ω) → H−1(Ω) is one-to-one.

The curl operator curl :D′(Ω) → D(Ω; RN(N−1)/2) is defined for each h = (hi) ∈D′(Ω) by

(curl h)i j = ∂ih j − ∂ jhi for each i < j.

A domain Ω in RN is a bounded and connected open subset Ω of RN whose boundary ∂Ω is Lipschitz-continuous, the 
set Ω being locally on the same side of ∂Ω .

Let | · | denote the Euclidean norm in RN and, given r > 0, let B(x; r) := {y ∈ R
N ; |y − x| < r}. An open subset of RN is 

starlike with respect to an open ball B(x; r) if, for each z ∈ Ω , the convex hull of the set {z} ∪ B(x; r) is contained in the set Ω .

2. Jacques-Louis Lions’ lemma

Let Ω be a domain in RN . The classical J.-L. Lions lemma asserts that f ∈ H−1(Ω) and grad f ∈ H−1(Ω) implies f ∈ L2(Ω). 
Its first published proof, under the assumption that the boundary of Ω is smooth, appeared in Duvaut and Lions [7]; see 
also Tartar [12] for a different proof, under the same assumption. The first proof for a general domain is due to Geymonat 
and Suquet [8].

That the assumption f ∈ H−1(Ω) can be replaced by the more general assumption f ∈ D′(Ω) was established by 
Borchers and Sohr [4], as a consequence of a result of Bogovskii [3], who gave a constructive proof that the operator 
div : H 1

0(Ω) → L2
0(Ω) is onto; then by Amrouche and Girault [2], as a consequence of an inequality due to Nečas [11] (also 

used in [8]), asserting the existence of a constant C0(Ω) such that

‖ f ‖L2(Ω) ≤ C0(Ω)
(‖ f ‖H−1(Ω) + ‖grad f ‖H−1(Ω)

)
for all f ∈ L2(Ω).

Note that the results of both [2], [4] and [8] hold for a general domain Ω . We shall call J.-L. Lions’ lemma this stronger 
result, which thus asserts that

f ∈ D′(Ω) and grad f ∈ H−1(Ω) implies f ∈ L2(Ω).

Both the classical J.-L. Lions lemma and its more general version above are fundamental results from functional analysis, 
with many crucial applications to partial differential equations (see, e.g., Sections 6.14 to 6.19 in [5]).

3. Jacques-Louis Lions’ lemma and its relation to other basic results

The main objective of this Note is to show, by means of a sequence of implications (Theorems 1 to 5), that the above 
properties, viz., both versions of J.-L. Lions’ lemma, the surjectivity of div, and the inequality of Nečas, as well as other 
properties, are in fact equivalent. The key to establishing these equivalences is an approximation lemma (cf. Theorem 4), 
which constitutes in effect one of the equivalence properties and appears to be new. In so doing, we provide in addition 
what we believe are substantially simpler proofs of those implications than those that are already known in the literature. 
Detailed proofs will appear in [1].
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Theorem 1. Let Ω be a domain in RN . Then the classical J.-L. Lions lemma:

f ∈ H−1(Ω) and grad f ∈ H−1(Ω) implies f ∈ L2(Ω)

implies J. Nečas’ inequality: there exists a constant C0(Ω) such that

‖ f ‖L2(Ω) ≤ C0(Ω)
(‖ f ‖H−1(Ω) + ‖grad f ‖H−1(Ω)

)
for all f ∈ L2(Ω).

Sketch of proof. The space

K (Ω) := {
f ∈ H−1(Ω); grad f ∈ H−1(Ω)

}
,

equipped with the norm f ∈ K (Ω) → (‖ f ‖H−1(Ω) + ‖ grad f ‖H−1(Ω)), is a Banach space. Since the identity mapping from 
L2(Ω) into K (Ω) is onto by the classical J.-L. Lions lemma, J. Nečas’ inequality follows from Banach’s open mapping theo-
rem. �
Theorem 2. Let Ω be a domain in RN . Then J. Nečas’ inequality implies that the image of the space L2

0(Ω) under the operator grad :
L2

0(Ω) → H−1(Ω) is closed in H−1(Ω).

Sketch of proof. The compactness of the canonical injection from L2(Ω) into H−1(Ω) (for a proof, see, e.g., Theorem 6.11-3 
in [5]) and J. Nečas’ inequality together imply the existence of a constant c(Ω) such that

‖ f ‖L2(Ω) ≤ c(Ω)‖grad f ‖H−1(Ω) for all f ∈ L2
0(Ω),

which in turn implies that the image of L2
0(Ω) under grad is closed in H−1(Ω) (note that this proof, which is that of 

Theorem 6.14-1 in [5], does not rely on the well-known Peetre–Tartar lemma as is usually the case; see, e.g., Corollary 2.1 
in Chapter 1 of [9]). �
Theorem 3. Let Ω be a domain in RN . That the image of L2

0(Ω) under grad is closed in H−1(Ω) is equivalent to the following coarse 
version of the de Rham theorem (a terminology borrowed from [9]): given a vector field h ∈ H−1(Ω), there exists a function 
p ∈ L2

0(Ω) such that

grad p = h in H−1(Ω)

if

H−1(Ω)〈h, v〉H 1
0(Ω) = 0 for all v ∈ H 1

0(Ω) such that div v = 0 in Ω.

If this is the case, the function p ∈ L2
0(Ω) is uniquely determined.

That the image of L2
0(Ω) under grad is closed in H−1(Ω) is also equivalent to the surjectivity of the operator

div : H 1
0(Ω) → L2

0(Ω),

a property that in turn implies that, for each f ∈ L2
0(Ω), there exists a unique element u f ∈ (Ker div)⊥ ⊂ H 1

0(Ω) such that

div u f = f ,

and that there exists a constant C1(Ω) such that the linear operator f ∈ L2
0(Ω) → u f ∈ (Ker div)⊥ defined in this fashion satisfies

‖u f ‖H 1(Ω) ≤ C1(Ω)‖ f ‖L2(Ω) for all f ∈ L2
0(Ω).

Sketch of proof. These equivalences follow from the properties that grad : L2
0(Ω) → H−1(Ω) is one-to-one and is the dual 

operator of − div : H 1
0(Ω) → L2

0(Ω), and from Banach’s closed range theorem; the existence of a constant C1(Ω) follows 
from Banach’s open mapping theorem. �
Theorem 4. Let Ω be a domain in RN that is starlike with respect to an open ball. That div : H 1

0(Ω) → L2
0(Ω) is onto implies that the 

following approximation lemma holds: There exists a constant C2(Ω) such that, given any function

ϕ ∈ D0(Ω) :=
{
ϕ ∈ D(Ω);

∫
Ω

ϕ dx = 0

}
⊂ L2

0(Ω),

there exist vector fields vn = vn(ϕ) ∈D(Ω), n ≥ 1, such that

‖vn‖H 1(Ω) ≤ C2(Ω)‖ϕ‖L2(Ω) for all n ≥ 1 and div vn → ϕ in D(Ω) as n → ∞.
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Sketch of proof. Let ϕ ∈ D0(Ω). By the assumed surjectivity of div : H 1
0(Ω) → L2

0(Ω), there exists a unique element uϕ ∈
(Ker div)⊥ ⊂ H 1

0(Ω) such that

div uϕ = ϕ and ‖uϕ‖H 1(Ω) ≤ C1(Ω)‖ϕ‖L2(Ω).

Let w denote the extension of uϕ by 0 outside Ω , so that w ∈ H1(RN ), div w = ϕ in Ω , div w = 0 outside Ω , and 
‖w‖H1(RN ) = ‖uϕ‖H 1(Ω) .

Assume without loss of generality that the ball with respect to which Ω is star-shaped is centered at the origin. Let n0
denote the smallest integer satisfying n0 > 2

r and let λn := 1 − 2
nr , n ≥ n0, where r is the radius of the ball, let un(x) :=

λn w( x
λn

) for all x ∈ R
N , n � n0, and let (ρn)∞n=1 denote a family of mollifiers ρn ∈ C∞(RN ) such that suppρn ⊂ B(0; 1

n ). Then 
each convolution product wn := un � ρn ∈ C∞(RN ), n ≥ n0, has the following properties:

vn := wn|Ω ∈ D(Ω), div vn = ϕ

( ·
λn

)
� ρn and ‖vn‖H 1(Ω) ≤ ‖uϕ‖H 1(Ω).

Finally, one shows that div vn → ϕ in D(Ω) (equipped with its natural inductive limit topology) as n → ∞ by combin-
ing differentiability properties of mollifiers with the uniform continuity and the boundedness of each higher-order partial 
derivative of the function ϕ . �
Theorem 5. Let Ω be a domain in RN . Then the approximation lemma implies that J.-L. Lions’ lemma holds, viz.,

f ∈ D′(Ω) and grad f ∈ H−1(Ω) implies f ∈ L2(Ω).

Sketch of proof. Assume first that Ω is starlike with respect to an open ball, and let f ∈ D′(Ω) be such that grad f ∈
H−1(Ω). Hence there exists a constant C2(Ω) such that

∣∣D′(Ω)〈 f ,divψ〉D(Ω)

∣∣ = ∣∣
H−1(Ω)〈grad f ,ψ〉H 1

0(Ω)

∣∣ ≤ C2(Ω)‖ψ‖H 1(Ω) for all ψ ∈ D(Ω).

Let ϕ1 ∈D(Ω) be such that 
∫
Ω

ϕ1 dx = 1 and let ϕ be an arbitrary function in D(Ω). Then

ϕ0 :=
(
ϕ −

(∫
Ω

ϕ dx

)
ϕ1

)
∈ D0(Ω),

and thus by the approximation lemma, there exist vector fields vn ∈D(Ω), n ≥ 1, such that

div vn → ϕ0 in D(Ω) as n → ∞ and ‖vn‖H 1(Ω) ≤ C1(Ω)‖ϕ0‖L2(Ω), n ≥ 1.

Hence

f (div vn) → f (ϕ0) as n → ∞ and
∣∣D′(Ω)〈 f ,div vn〉D(Ω)

∣∣ ≤ C2(Ω)‖vn‖H 1(Ω) for each n ≥ 1.

Since ‖ϕ0‖L2(Ω) ≤ (1 + ‖ϕ1‖L2(Ω)

√
meas Ω)‖ϕ‖L2(Ω) and f (ϕ) = f (ϕ0) + (

∫
Ω

ϕ dx) f (ϕ1), it follows that there exists a 
constant C3(Ω) such that

∣∣ f (ϕ)
∣∣ ≤ C3(Ω)‖ϕ‖L2(Ω) for all ϕ ∈ D(Ω),

which proves that f ∈ L2(Ω). Hence J.-L. Lions’ lemma holds for domains that are starlike with respect to an open ball.
If now Ω is a general domain, Ω can be written as a finite union 

⋃ J
j=1 Ω j of domains Ω j, j ∈ J , contained in Ω , each 

one of which is starlike with respect to an open ball. Then J.-L. Lions’ lemma on Ω is obtained by combining the above J.-L. 
Lions lemma on each set Ω j , 1 � j � J , with a partition of unity associated with the open cover Ω = ⋃ J

j=1 Ω j . �
Since J.-L. Lions’ lemma evidently implies that the classical J.-L. Lions lemma holds, all the properties established in Theo-

rems 1 to 5 are thus equivalent.
There exist independent, i.e., “direct”, proofs of some of these properties, for instance that by Bogovskii [3] of the surjec-

tivity of div : H 1
0(Ω) → L2

0(Ω) or that by Nečas [11] of Nečas inequality. Therefore, any such proof provides, by means of 
some of the equivalences established here, a means of proving J.-L. Lions’ lemma, the known “direct” proofs of which are 
notoriously difficult when Ω is a general domain.

For completeness, we also mention in Theorems 6 and 7 below two other “less direct” equivalences involving J.-L. Lions’ 
lemma. The first one is with a “weak” version (in the sense that it holds in lower-order Sobolev spaces) of the classical 
Poincaré lemma.
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Theorem 6. The classical J.-L. Lions lemma and the surjectivity of div : H 1
0(Ω) → L2

0(Ω) (itself a consequence of the classical J.-L. 
Lions lemma; cf. Theorems 1, 2 and 3) together imply that the following weak Poincaré lemma holds: let Ω be a simply-connected 
domain in RN . Then, given a vector field h ∈ H−1(Ω), there exists a function p ∈ L2(Ω) such that

grad p = h in H−1(Ω)

if

curl h = 0 in H−2(Ω).

If this is the case, all other solutions p̃ ∈ L2(Ω) to grad p̃ = h are of the form p̃ = p + C , where C is a constant.
Conversely, the weak Poincaré lemma implies that J.-L. Lions’ lemma holds on any domain in RN.

Sketch of proof. For the proof of the first part of this theorem, we refer the reader either to Ciarlet and Ciarlet, Jr. [6] for 
the original proof, or to Kesavan [10] for a simpler proof.

To establish the second part, assume first that the domain Ω is simply-connected. Then it suffices to notice that 
curl grad f = 0 in D′(Ω) for any f ∈ D′(Ω), so that the assumption that grad f ∈ H−1(Ω) allows us to use the weak 
Poincaré lemma. This shows that there exists a function p ∈ L2(Ω) such that grad p = grad f , which in turn implies that 
f − p is a constant function. Hence f ∈ L2(Ω), i.e., J.-L. Lions’ lemma holds in this case.

Since a general domain Ω in RN can be written as a finite union Ω = ⋃
i∈I Ωi of simply-connected domains Ωi ⊂ Ω , it 

suffices to use a partition of unity associated with the open cover 
⋃

i∈I Ωi of Ω and to use the above implication over each 
subdomain Ωi, i ∈ I . �

The second equivalence is with a “less coarse” version of de Rham theorem than that established in Theorem 3.

Theorem 7. J.-L. Lions’ lemma and the coarse version of the de Rham theorem (itself a consequence of J.-L. Lions’ lemma; cf. 
Theorems 1, 2, and 3) together imply that the following simplified version of the de Rham theorem holds (a terminology again 
borrowed from [9]): let Ω be a domain in RN . Then, given a vector field h ∈ H−1(Ω), there exists a function p ∈ L2

0(Ω) such that

grad p = h in H−1(Ω)

if

H−1(Ω)〈h,ϕ〉H 1
0(Ω) = 0 for all ϕ ∈ D(Ω) such that divϕ = 0 in Ω.

If this is the case, the function p ∈ L2
0(Ω) is uniquely determined.

Conversely, the simplified version of the de Rham theorem implies that J.-L. Lions’ lemma holds.

Sketch of proof. The proof of the first part uses arguments similar to those used in the proof of Theorem 2.3 in Chapter 1 
of Girault and Raviart [9]. The proof of the second part follows from Theorem 3. �
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