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We prove that a normal magnetic curve on the Sasakian sphere S
2n+1 lies on a totally

geodesic sphere S
3, and that the Sasakian structure on S

3 is that induced from S
2n+1.
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r é s u m é

Nous montrons qu’une courbe magnétique normale sur la sphère sasakienne S
2n+1 se

trouve sur une sphère totalement géodésique S
3, et que la structure sasakienne sur S

3

est celle qui est induite de S
2n+1.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In a previous paper [4], we studied magnetic curves in Sasakian and cosymplectic manifolds. More precisely, we showed
that, essentially, the study of magnetic curves in Sasakian space forms of arbitrary dimension M2n+1(c) reduces to their
study in dimension 3. In particular, we proved some results on the reduction of the codimension. When M2n+1(c) is the
odd dimensional sphere, we proved the following result. If γ is a normal magnetic curve on the (Sasakian) sphere S2n+1 , then γ
lies on the totally geodesic sphere S3. Magnetic curves in 3-dimensional Sasakian manifolds were studied, for example, in [2,3].
Yet, in [4] we omitted the proof that the Sasakian structure on S

3 is that induced from the ambient S
2n+1. We only proved

that ξ is tangent to S
3 along the curve γ , since ξ belongs to the 2-plane spanned by the tangent T = γ̇ and the second

normal ν2. In this note, we clarify these aspects. More precisely, we prove the following theorem.

Theorem. Let γ be a normal magnetic curve on the standard Sasakian sphere (S2n+1,ϕ, ξ,η, g), corresponding to the contact
magnetic field Fq. Then γ is a normal magnetic curve on a 3-dimensional sphere S

3(1), embedded as a Sasakian totally geodesic
submanifold in S

2n+1(1).
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2. Preliminaries

One of the topics situated at the interplay between differential geometry and physics is represented by the study of
magnetic fields on Riemannian manifolds and of their corresponding magnetic curves. A closed 2-form F on a (complete)
Riemannian manifold (M, g) is called a magnetic field. The Lorentz force on (M, g, F ) is the skew symmetric (1,1)-type tensor
field Φ on M satisfying g(Φ(X), Y ) = F (X, Y ), for any X, Y ∈ X(M). Finally, a trajectory generated by the magnetic field F is
defined as a smooth curve γ on M fulfilling the Lorentz equation ∇γ̇ γ̇ = Φ(γ̇ ), where ∇ denotes the Levi Civita connection
of g . For more details, see, e.g., [1].

A manifold M2n+1 is said to have an almost contact metric structure, if there exist a 1-form η, a vector field ξ , a (1,1)-type
tensor field ϕ and a Riemannian metric g such that:

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X, Y ) − η(X)η(Y ), ∀X, Y ∈ X
(
M2n+1).

An almost contact metric manifold (M2n+1,ϕ, ξ,η, g) is called Sasakian if

(∇Xϕ)Y = −g(X, Y )ξ + η(Y )X,

for any X, Y ∈ X(M2n+1), where ∇ is the Levi Civita connection on M2n+1. As a consequence, we have ∇Xξ = ϕX , ∀X ∈
X(M2n+1). Note that we use the sign convention from [5].

Let S
2n+1 be the unit sphere endowed with the canonical Sasakian structure (ϕ, ξ,η, g) induced from the Kähler struc-

ture of C
n+1. More precisely, if J denotes the canonical complex structure on C

n+1 ≡ R
2(n+1) , and a point p ∈ S

2n+1 is
identified with its position vector, we have

ξ = Jp, η(X) = −〈 J X, p〉, ϕX = J X + η(X)p,

for all X tangent to S
2n+1. The metric g is that induced from the Euclidean product 〈 , 〉 of R2(n+1) .

A smooth curve γ : I ⊂ R−→ S
2n+1 parameterized by arc length is called a normal magnetic curve on S

2n+1 if its velocity
satisfies the Lorentz equation

∇γ̇ γ̇ = qϕγ̇ , (1)

where q �= 0 is a real constant called the strength.
Since S

2n+1 is embedded in the Euclidean space R
2(n+1) , one may write the Lorentz equation (1) in the ambient space

as follows:

γ̈ + γ = q
(

J γ̇ + cos θ(s)γ
)
, (2)

where θ is the angle function between the unit tangent γ̇ and the characteristic vector field ξ in γ (s). In fact, it was proved
that the angle θ is constant. See for example [4].

Subsequently, we have to study curves γ : I −→ C
n+1 satisfying

γ̈ + iaγ̇ + bγ = 0, (3)

where a,b are real constants. In our case a = −q and b = 1 − q cos θ .

3. Reduction of the codimension: proof of the theorem

Let z1, . . . , zn+1 be global coordinates on C
n+1. For any k ∈ {1, . . . ,n + 1} write z = zk . Then, Eq. (3) reduces to

z̈ + iaż + bz = 0.

In order to prove our statement, we have to solve first this equation, which is equivalent to

ẅ +
(

a2

4
+ b

)
w = 0, (4)

where we put

w =
(

sin
as

2
− i cos

as

2

)
z. (5)

As a2

4 + b > 0, when sin θ �= 0 we immediately obtain the solution:

w(s) = α cos(cs) + β sin(cs), (6)

where c =
√

a2 + b and α,β are arbitrary complex constants.
4
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Going back to Eq. (3), we are able to write the general solution

zk(s) =
(

cos
qs

2
+ i sin

qs

2

)(
αk cos(cs) + βk sin(cs)

)
,

where αk , βk ∈C, k = 1, . . . ,n + 1. Hence, the curve γ in R
2(n+1) may be written as

γ (s) = cos
qs

2
cos(cs)V 1 + sin

qs

2
cos(cs)V 2 + cos

qs

2
sin(cs)V 3 + sin

qs

2
sin(cs)V 4,

where V 1, . . . , V 4 are constant vectors in R
2(n+1) of the form

V 1 = (v1, v2), V 2 = (−v2, v1), V 3 = (v3, v4), V 4 = (−v4, v3),

with v1, . . . , v4 ∈ R
n+1. Since γ (s) is unitary, we obtain

cos2(cs)
(|v1|2 + |v2|2

) + sin2(cs)
(|v3|2 + |v4|2

) + sin(cs) cos(cs)
(〈v1, v3〉 + 〈v2, v4〉

) = 1, ∀s.

Hence

|v1|2 + |v2|2 = |v3|2 + |v4|2 = 1, 〈v1, v3〉 + 〈v2, v4〉 = 0,

i.e. V 1, V 2, V 3, V 4 are unitary and V 1 ⊥ V 3, V 2 ⊥ V 4.
The fact that γ is parameterized by arc length implies that

〈V 1, V 4〉 = 1 − 2q cos θ

c
= −〈V 2, V 3〉.

If V 1 and V 4 are collinear, then V 2 and V 3 are collinear too, and hence

γ (s) = cos

(
q

2
− εc

)
sV 1 + sin

(
q

2
− εc

)
sV 2, ε = ±1,

which is a circle of radius 1 in a 2-plane in R
2(n+1) invariant by J . The tangent vector γ̇ (s) coincides with ±ξ|γ (s) , hence

sin θ = 0.
If V 1 and V 4 are linearly independent, then one may consider the 4-dimensional real vector space V4 = span{V 1, . . . , V 4},

which is a J -invariant subspace in R
2(n+1) . Since V 1, . . . , V 4 are constant vectors, the space V4 is independent of s.

We have proved that γ lies on the unit 3-sphere S
3 as hypersurface in V4. But the standard Sasakian structures on the

two spheres are obtained from the same complex structure J , since V4 is J invariant. It follows that S3 carries the induced
Sasakian structure of S2n+1.

When sin θ = 0, then γ̇ is collinear to ξ . From the Lorentz equation we have that γ is a geodesic in S
2n+1 as integral

curve of ξ .
Hence the theorem is proved.
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