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v Upxx — 3y + SUxlxy + Ullyxx = 0.

Presented by Jean-Michel Bon
v v This equation can also be viewed as the short-wave model for the Degasperis-Procesi equa-

tion. The approach is based on an associated Riemann-Hilbert problem, which allows us to
give a representation for the classical (smooth) solution of the Cauchy problem, to get the
principal term of its long-time asymptotics, and also to find, in a natural way, loop soliton
solutions.
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RESUME

Nous présentons une étude par diffusion inverse de I'équation (différentiée) d’Ostrovsky-
Vakhnenko :

Utxx — 3Uy + SUxlxy + Ullyxx = 0.

Cette équation peut aussi se voir comme le modéle «ondes courtes» de I'’équation de
Degasperis-Procesi. Notre approche consiste a se ramener a I'étude d'un probléme de
Riemann-Hilbert associé. Elle nous permet d’obtenir une représentation de la solution clas-
sique (lisse) du probléme de Cauchy et de déterminer le terme principal de I'asymptotique
a temps grand de cette solution. Elle permet aussi d’obtenir, de fagon naturelle, des solu-
tions solitons de type a boucle.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

L'objet de cette Note est de présenter une approche de type diffusion inverse pour I'équation non linéaire d’Ostrovsky-
Vakhnenko sur la droite. Elle consiste a reformuler le probléme de Cauchy sous la forme d'un probléme de Riemann-Hilbert
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matriciel associé. Nous supposons que la donnée initiale ug(x) est une fonction suffisamment lisse, qui tend assez rapide-
ment vers 0 a I'infini et qui vérifie —ugy(x) +1 > 0 pour tout x.

Sous ces hypothéses, nous obtenons une représentation de la solution u(x,t) du probléeme de Cauchy en termes de
solution d’'un probléme de Riemann-Hilbert associé. Les données d'un tel probléme sont définies dans le plan complexe du
parameétre spectral z. Elles sont exprimées en termes de la fonction spectrale r(z) associée a la donnée initiale ug(x).

Cette représentation de u(x,t) permet d’appliquer la méthode du «col non linéaire» de Deift et Zhou [11] pour étudier
son comportement asymptotique pour de grandes valeurs du temps t. Cette étude révéle que le demi-plan —oco < x < 400,
t > 0 se partage en deux secteurs, suivant le signe de x/t, ol la solution a un comportement asymptotique de nature
différente, soit a décroissance rapide, soit a oscillations modulées lentement décroissantes.

Nous montrons, en outre, comment cette approche permet d'introduire, de fagon naturelle, des solutions particuliéres, de
type soliton, de cette équation d’Ostrovsky-Vakhnenko. On les obtient en imposant certaines conditions de résidu dans la
formulation du probléme de Riemann-Hilbert associé. Les solutions correspondantes sont alors nécessairement des fonctions
multi-valuées, de type soliton a boucle (loop soliton).

1. Introduction
We consider the partial differential equation:

Ugxxy — 3K Ux + 3Uxlixy + Ulyxx = 0, (1)

where k > 0 is a parameter and u = u(x,t) is real-valued. This equation stems from the short-wave limit—introducing
X =x/g, t' =et, u' =u/e?, where ¢ is a small parameter—of the Degasperis—Procesi (DP) equation [10]:

Ur — Ugxx + 3K Uy + 4uty = 3Uylyy + Ullxxx.

For « = 1/3, Eq. (1) reduces, after the change of variables (u,t) — (—u, —t), to the (differentiated) Vakhnenko equa-
tion [16,19]:

(Ur + uty)x +u=0. (2)

Eq. (2) arises in the context of the propagation of high-frequency waves in a relaxing medium [18,19]. On the other hand,
being written in the form:

(Ut + collx + clluy)x = YU, (3)

it is also called the “reduced Ostrovsky equation” [17]: it corresponds, in the case g =0, to the equation:

(ur + coux + auuy + Buxxx)x = YU “)

that was derived by Ostrovsky [15] in the study of weakly nonlinear surface and internal waves in a rotating ocean influ-
enced by Earth rotation. Therefore, we find it more correct to call (2) the “Ostrovsky-Vakhnenko equation” (OV), as it is
proposed in [9].

Eq. (4) is also known as the “Rotation-Modified KdV equation” (RMKdAV); see, e.g., [7,8]. The term yu (kept in the
reduced form (3) of the equation) is responsible for a large-scale dispersion due to the influence of Earth rotation (the
Coriolis dispersion). In [12], Hunter noted that Eq. (3) arose as the short-wave limit of the RMKdV equation and, more
generally, it is the canonical asymptotic equation for genuinely nonlinear waves that are non-dispersive as their wavelength
tends to zero. This justifies the name “Ostrovsky-Hunter equation”, which is sometimes used for (2) after the change of
variables (u,t) — (—u, —t).

Eq. (1) is (at least, formally) integrable: it possesses a Lax pair representation:

1
Yxx = M —Uxx + KV, Yr = x\ﬁxx_wﬁx‘i‘uxw, (5)

where ¥ = ¥ (x,t, ). In [20], the authors introduced a change of variables u(x,t) = U(X,T) = Wx(X,T), x=x9+ T +
W (X, T), t = X, which reduced (2) to the so-called “transformed Vakhnenko equation”:

Wxxt + (1 +Wr)Wx =0. (6)

These variables turned out to be convenient for applying Hirota’s method for constructing exact soliton solutions to (2)
[20,14,23], which are multi-valued functions having the form of one loop (1-soliton) or of many loops (multi-solitons).
Another approach to deriving formulas for multi-loop solutions of (1) was proposed in [13], where these solutions were
obtained by taking a scaling limit in Hirota-type formulas for the multi-soliton solution of the DP equation.

In [21,22], some form of the inverse scattering method has been applied to (6), which allowed them to show that
the loop solitons can be associated, in a standard way, with the eigenvalues of the X-equation of the Lax pair associated
with (6). With this respect, we notice that the new variable X is in fact the original time variable ¢, and thus the formalism
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of the inverse scattering method is applied in [21,22] in such a way that the t-equation (in the original variables) is used as
spectral problem whereas the x-equation provides the “x-evolution” of the spectral data.

In this Note, we present a Riemann-Hilbert (RH) approach to the OV equation, which is based directly on the Lax pair (5),
in the form of a pair of 3 x 3 matrix ODEs. This approach allows us to handle the initial value problem for (1) in a general
setting, consistent with the natural physical sense of the variables: the initial data is a function of x, and we are interested
in their evolution in t. Under certain conditions on the initial data, we obtain the long time asymptotics of the solution of
the Cauchy problem and also show how loop solitons can be retrieved in the framework of our approach.

2. Riemann-Hilbert formalism

Without loss of generality, in what follows we assume that x =1 and we consider the Cauchy problem:

Upxx — Uy + SUylyy + Ulxxx =0, Xx € (—00,00), t >0, (7a)
u(x,0) =up(x), xe(—00,00), (7b)

where ug(x) is smooth and decays sufficiently fast as |x| — 0o, and —ugxx(x) +1 > 0 for all x—then one can show that
u(x,t) exists globally and —uyx(x,t) +1 > 0 for all (x,t).

For studying the Cauchy problem, we propose an inverse scattering formalism, where the solution is represented in terms
of the solution of an associated RH problem in the complex plane of the spectral parameter. One of the main advantages
of such a representation is the possibility to use it efficiently in studying the long-time behavior of the solution, using the
nonlinear steepest descent method [4,1,2].

It is convenient to introduce the inverse scattering formalism through a Lax pair having the form of a system of first-
order, matrix-valued linear equations, which provides good control on the behavior of dedicated solutions of this system as
functions of the spectral parameter.

A similar approach for the DP equation is developed in [2], but its realization (including the asymptotic analysis) in that
case differs substantially from the case of Eq. (7a) presented here, see below.

Proposition 2.1. Eq. (7a) is the compatibility condition of the system of 3 x 3 linear equations:

Py —qAR)P =UD, (8a)
@+ {ugAx) — A7 @ )e =V O, (8b)

where @ = & (x, t, z) is 3 x 3 matrix valued, q := (—ux + 1)1/3, A(z) = diag{zw, zw?, z}, w = e*71/3,

0 1-w? 1-w 1

qX 2 1 1 2 1
U=—|1-w 0 1—w ), V=—uU+—{3(-—-1|I+|q"— - 1
3\1-w? 1-w 0 3z1 \q a/\1

I denotes the 3 x 3 identity matrix.

—_—

—_
S~—
——

Vector RH problem. We consider the row vector-valued RH problem
“o(y,t,2) =+ (y,t,2)S(y,t,2), ze€ X :=RUoRU®*R,
ny.t,z2)—> (1 1 1), z— o0, 9)

where w(y,t,z) = (u1(y,t,2) u2(y,t,z) u3(y,t,z)) is piecewise analytic w.r.t. X, and w1 denotes its limiting values as z
approaches the oriented contour X from the =+ side. The input data for this problem—the jump matrix S—is defined in
terms of the spectral function r(z), z € R, and uniquely determined by the initial data ug(x) in the following way:

S(y.t,2) =V AOHAT D5 (e VAD—ATD e 5 (10)

where So(z) and r(z) are defined as follows:

1 f 0
(a) for zeR, Sp(z) = <—r(z) 1-r2)| 0);

0 0o 1
(b) here r(z) is defined from the relation cDS)(x, zZ) = q)(_])(x, z) — r(z)<1>(_2)(x, z), where the q)(ij)(x, z)'s are the vector
solutions ((D(ij) = (D11j Pi2j cbigj)T) of (8a)—with u replaced by ug—fixed by the boundary conditions for their com-
ponents:
D111 =(1+0(1))e®>, x— +oo0, @_15 = o(1)e® %, X — 400,
{ P21 = 0(1)e¥?, x — o0, @9 =(1+0(1)e?’?, x— +oo, (11)
@31 =0(1)e??, X — sign(z)oo, D 3= 0(1)ew22x7 X — sign(z)oo;
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001
(c) for ze wR U w?R, So(z) is defined using (a) and the relation So(z) = CSo(wz)C~! with C = (1 0 0).
010

Theorem 2.2. The solution u(x, t) of the Cauchy problem (7) can be expressed, in parametric form, in terms of the solution pu(y,t,z) =
(m1(y,t,2) ua(y,t,z) us(y,t,z)) of the vector-valued RH problem (9)-(11) as follows: u(x, t) = ti(y(x,t),t), where:

t, 1 . ax(y,t
M3(y.t.2) I agn= Xy, 0
m3(y,t,0) z at

Elements of proof. (i) Assuming that u(x, t) solves (7), define a piecewise (w.r.t. ') analytic 3 x 3 matrix-valued function
M(x, t, z) through the solution of the Fredholm integral equations (j,/=1, 2, 3):

x(y,t) =y + N(y, t)—y+1 ( (12)

X
- o [E - £
Mu(x,t,2) =1 + / e M@ ACOK (W) (5, t, 2)]eM@ x 9€0 e gg
OOj,[

where 1j(z) = zw’ and

+o00, if Redi(z) > ReAr(2),
oo]-,—{ j(2) > Re k(@) (13)

—oo, if ReXj(z) <Rei(2).

These equations provide good control for large zz M — I as z — oo, z€ C\ X. On the other hand, @ := Me2, where
Qx, t,2) =y, ) Az) +tA~1(z) with y :=x — fxoo(q(é, t) — 1) d¢, solves (8). Moreover, the limiting values of M(y,t, z) :=
M(x(y,t),t,z) as z approaches X satisfy the jump relation in (9). Notice that the boundary conditions (11) are consistent
with the definition of signs in (13).

(i) Introduce ®g(x,t,z) =G 1(x, )M (x, t, 2)eY*DA@ \where:

(Of B B) 1 1 1
Gx,t)=|p a B witha=—<q+1+—>andﬁ_ <q+w + )
B B « 3 q q

® 00 111

and notice that @( solves the differential equation ®@oyx = (A(z) + Up)Po with Uy = —2“3# <0 »? 0) (1 1 1). The fact that
001 111

Up(x,t,z) =0 at z=0 implies that @y can be efficiently controlled for small z. Namely, in terms of M, we have:

. . - .~ N2,
M=G<I+z{—%Q+NA}+zz{—%Q—%NQA+7A2}+O(z3)> asz— 0, (14)

w (U (U
where N =x — y(x, t)_f q&,t) —1)dg, A= diag{w, w?, 1}, .Q—(w @ e? ), and 2 = AR — QA.
1

1
(iii) The expansion (14) is used to represent the solution u(x,t) of the Cauchy problem in terms of the solution of the
Riemann-Hilbert problem evaluated at z=0. Indeed, introducing . = (1 1 1)M, Egs. (12) follow in view of (14).
It should be noted that in the case of DP, the representation for the solution of the Cauchy problem is different from (12).
It stems from the special matrix structure of the solution of the associated RH problem evaluated at a dedicated (non-zero)
point of the complex spectral plane (see [2, Theorem 3.1]).

3. Loop solitons

Particular, closed-form, solutions of Eq. (7a) can be obtained, in the framework of the RH method, assuming that the
jump conditions are trivial (S =) and adding to (9) nontrivial residue conditions at certain points z=2z,,n=1,2,...:

Resz—z, wi(y,t,2) = M,(y t, Zn)v” YO @ =M@+ @47 @)
—4n g

with some scalar constants v,1 (different columns have different poles). In order to have a real-valued solution u, the
mm

simplest case (taking into account the symmetries) involves six poles, at z = pe &+ =0,...,5, with some p > 0,
where the residue conditions have the form:

Res,— iy 111(y,1,2) = ta(y, t,ipyye V2PV~

with some constant y = |y|e‘¢ (at the other five points, the associated conditions follow by symmetries). Then the RH
problem can be explicitly solved, by linear algebra, which gives the following form of w:

A+ =+

aw a aw? (170) aw?
p=(1+——+ —, — — :
Z+10 74 pet Z=10  z4 peTe Z—pet  z—pe®
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where

eive + 2 A —V3p(y+-5+0) 1 [y
a=23p —— withe=¢(y,t)=e p? and yg = ——— log ———.
1—4cos(¢p — F)é +é2 V3p T 2V3p
Taking into account the relation 9yN = (1 — u3(y,t,0))/u3(y,t, 0), that follows from (14), and requiring u to be bounded
forces ¢ to have the value ¢ = /3, which leads, through (12), to the parametric representation of a one-soliton solution:

2\/§ e R 6 e
,t = — ,t =———————
x(y,H=y+ u(y,t) 21162

o 1+¢é°
These formulas show that the soliton solution #i(y, t) is a smooth function in (y, t), whereas in the original variables (x,t),
it is a multivalued, loop-type function. This fact suggests the conjecture that the solution of the Cauchy problem (7) with
regular initial condition is always associated with a RH problem without any residue conditions, whereas forcing nontrivial
residue conditions leads to non-classical (multivalued) solutions. In contrast, the solitary waves for DP are usual smooth
solitons [13].

4. Long time asymptotics
The representation of the solution u to the Cauchy problem (7) in terms of an associated RH problem allows applying
the nonlinear steepest descent method of Deift and Zhou [11] to study the long-time asymptotics of u. A key feature of this

method consists in a series of deformations of the original RH problem: (i) contour deformations and (ii) approximations of
the jump matrix. By (10), for z € R,

1 e 2OCDF () 0
S(z) = (—eZif@(f*Z)r(z) 1—r(2)? 0)
0 0 1
where ¢ := y/t and

3
@(g:z)=—§(gz—z*).

We have similar expressions for z € @R and z € w?R:

1- @22 0 —e AOCO* D27 1 0 0
S(2) = 0 1 0 , s@=1]0 1 Q20 €. 0F (47
e2it@({»a)22)f(wzz) 0 1 0 _e—2it@({,a)z)r(a)z) 1— |r(a)z)|2

The deformations are dictated by the “signature table”, which is the distribution of signs of Im® (¢, w iz) near z € w/R,
j=0,1,2, in the complex z-plane, ¢ being fixed. They depend in particular on the possible critical points of the imaginary
part of the phase t® (¢, z) that exist on the real line only for ¢ < 0. The deformations reduce the original RH problem, for a
large time t, to model RH problems whose solutions can be explicitly computed [11].

The signature table depends on the value of the parameter ¢ = y/t, which leads to the dependence of the asymptotics
on the value of x/t ~ y/t. Moreover, qualitatively different asymptotics are associated with certain ranges of values of x/t,
which correspond to sectors in the half-plane —oco < x < 0o, t > 0.

On the one hand, the matrix structure of the jump matrix is similar to that in the case of the DP equation, which
implies that the long time analysis shares some common steps with that for DP [2]. On the other hand, the signature table
is different, being more similar to the case of the short-wave Camassa-Holm equation [6]. Hence, the decomposition of the
half-plane t > 0, —o0 < x < 0o into domains with a qualitatively different long-time behavior is different from that in the
case of DP.

Theorem 4.1. Let u(x,t) be the solution of the Cauchy problem (7). Then the large t behavior of u is as follows. Let € be any small
positive number.

(i) In the sector x/t > &, u(x, t) tends to 0 with fast decay. More precisely, u(x, t) = O(t™") for some n > 1 depending on the smooth-
ness and on the rate of decay of the initial data ug(x).

(ii) In the sector x/t < —g, u(x, t) exhibits decaying—of order 0(t~1/2)—modulated oscillations with coefficients that are functions of
x/t given in terms of the associated spectral function r(z):

c1(x)

ux, t) = cos(c2(x)t + c3(x) logt 4 c4(¢)) + O(t™%), (15)

for some o > 1/2 and with
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100 = 2%3% h(x) Sin(argr(;{) —argr(—x) B 2_71)’

K3 2 3

C200) =

c3(%) =h(x),

*\s

C4(x)—hlog8“/— argr(”)+zargr(_”)+argr(—1h)+”+ [ M
f / log x — sl dlog(1 — |r(s)|*) + / / log(ls;K(;ilJ:(j;Jr%) N

with h = h(x) = — 5= log(1 — [r()|?) and x = J/t/1x].

Here I' is the Euler gamma function. Moreover, the error terms O(t™") and O(t~%) are uniform in the sectors x/t > &
and x/t < —¢, respectively.

Matching of the asymptotics. Matching of the asymptotics for positive and negative values of x is provided by the fast decay
of the amplitude c1(x) in the sector x/t < —& as x = +/t/]x] — oo. Indeed, in this limit, the critical point x = /t/[x] on the
contour of the original RH problem, i.e., on the real line, is growing. Thus, the factor h(x) in cq(x) is decaying to 0O as fast
as the reflection coefficient r(x) is, the latter depending on the smoothness and decay of the initial condition ug(x). Here,
one can see a certain analogy with matching the asymptotics for, e.g., the modified Korteweg-de Vries equation in domains
where x/t is approaching —oo: there, a similar behavior of the critical points takes place, see [11].

Such a matching is completely different from that in the case of DP. Indeed, in the latter case, a transition zone exists
between the solitonic sector (which, in the case of absence of solitons, becomes the sector of fast decay) and the sector of
modulated oscillations; in this zone, where x/t — 3 is small, the main asymptotic term is expressed in terms of a solution
of the Painlevé II equation.

The appearance of a Painlevé zone in the asymptotics of integrable nonlinear equations is indeed characterized by two
factors: (i) at the corresponding point (x/t = 3 for DP), there is a bifurcation in the signature table for the associated RH
problem giving rise to a self-intersection point on the contour, with a specific behavior of the exponential factors near
this point; (ii) the value of the reflection coefficient at the corresponding point k is non-zero and thus one can define a
nontrivial solution of the Painlevé II equation (w.r.t. s) having the asymptotics r(x) Ai(s) as s — +oo, where Ai(s) is the Airy
function.

Details in the case of the Camassa-Holm equation—which is similar, in this respect, to DP—can be found in [5]. In the
case of OV, none of these properties is satisfied for small x/t, i.e., for the zone between the sectors of fast decay and of slow
decaying modulated oscillations.

An expanded version with proofs can be found in the arXiv preprint [3].
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