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We show how to combine our earlier results to deduce strong convergence of the interfaces
in the planar critical Ising model and its random-cluster representation to Schramm’s SLE
curves with parameters κ = 3 and κ = 16/3, respectively.
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r é s u m é

Cet article explique comment combiner certains résultats antérieurs des différents auteurs
afin de montrer la convergence forte des interfaces du modèle d’Ising critique planaire et
de sa représentation FK vers les courbes SLE(3) et SLE(16/3) introduites par Schramm.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the main theorems

In [16], Oded Schramm introduced SLE – a family of random fractal curves parameterized by κ > 0, which are obtained
by running Loewner evolution with a speed κ Brownian motion as the driving term. Schramm showed that those are the
only possible conformally invariant scaling limits of interfaces in 2D critical lattice models, and the convergence to SLE was
indeed proved in a number of cases, see [13,17].

The 2D Ising model is one of the most studied models of an order–disordered phase transition. Existence of a conformally
invariant scaling limit at criticality in the sense of correlation functions was postulated in the seminal physics paper [2] and
used to deduce unrigorously many of its properties since. Recently, one of us [17] has constructed discrete holomorphic
observables in the critical Ising model on bounded discrete domains (and its random cluster representation), which have
been shown to have conformally invariant scaling limits in [18,7]. This paved a way to an ongoing project of rigorously
establishing conformally covariant scaling limits for all critical Ising correlation functions [11,10,6,5]. On the other hand,
it had a corollary that interfaces in the spin Ising model and its FK (random cluster) counterpart converge to SLE(3) and
SLE(16/3) in the sense of the driving terms. Namely, discrete interfaces are given by Borel probability measures on the
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space of driving terms with the uniform norm. As one passes to the scaling limit, those measures converge weakly to the
Brownian motions of the appropriate speeds.

To study geometric features of the interfaces, it is important to strengthen the topology of convergence to the uniform
metric on the space of curves themselves. A possible way to arrive to this convergence was suggested in [12], with a
corollary that FK interfaces converge to SLE(16/3) curves. In this Note, we provide a self-contained framework to establish
this stronger convergence both in the spin and the FK case, by combining the setup from [12] with the crossing estimates
from [7,4] and the results on the observables convergence from [18,7].

Definition of the model. We discuss spin Ising and FK Ising models on the square lattice Z
2 (see [9] and references therein

for background). The results can be generalized to isoradial planar lattices as explained in [7]. For a finite subgraph G =
(V , E) ⊂ Z

2, the spin Ising model on G at inverse temperature β is a random assignment of spins σx ∈ {−1,+1} such that
the configuration σ = (σx)x∈V has probability proportional to exp(β

∑
(xy)∈E σxσy). The FK Ising model is its random-cluster

counterpart obtained via the Edwards–Sokal coupling, see e.g. [9]. More precisely, it is a dependent bond percolation model
on G: the probability of a configuration ω ⊂ E is proportional to [p/(1 − p)]o(ω)2c(ω) , where o(ω) and c(ω) are respectively
the number of edges and connected components (clusters) in ω, and where p = 1 − e−2β . We consider the models at the
critical point βcrit = 1

2 log(1 + √
2) and pcrit = √

2/(1 + √
2).

Interfaces for Dobrushin boundary conditions. Let Ω be a bounded simply connected domain and a,b ∈ ∂Ω be two distinct
boundary points (more accurately, two degenerate prime ends, see [15, §2.4,2.5]) of Ω . We aim to approximate Ω (in any
reasonable sense) by subgraphs of the square grids δZ2 successively refined as δ → 0. Let Ωδ ⊂ δZ2 be a simply connected
(meaning connected and with connected complement) approximation, and aδ , bδ be two vertices near a and b on the
boundary ∂Ωδ . When going in counterclockwise order, aδ and bδ define two arcs of ∂Ωδ denoted by (aδbδ) and (bδaδ).

For the spin Ising model, the boundary conditions “−1” on (aδbδ) and “+1” on (bδaδ) are called Dobrushin boundary
conditions in (Ωδ;aδ,bδ). These boundary conditions generate a spin interface γ δ – simple curve running from aδ to bδ that
has spins “+1” on its left side and spins “−1” on its right. For technical reasons (e.g. to avoid self-touchings), we prefer
to draw γ δ on the auxiliary square-octagon lattice, with octagons corresponding to the vertices of Ωδ . We assume γ δ to
be the rightmost (or the leftmost) interface, but it could also turn arbitrarily in ambiguous situations with four alternating
spins around a face. As we obtain the same limit for all choices of γ δ , the possible differences are only microscopic.

For the FK Ising model, we consider free boundary conditions on (aδbδ) and wired ones on (bδaδ), and call them Do-
brushin boundary conditions in (Ωδ;aδ,bδ). In this case, configurations are best seen together with their dual counterparts
defined on the dual graph G∗ . In the dual model (which is again the critical FK Ising model) the boundary conditions
become dual-wired on (aδbδ) and dual-free on (bδaδ). Let γ δ be the unique interface (again, drawn on the auxiliary square-
octagon lattice, see [12, Section 4.1]) that separates the FK cluster on G connected with (bδaδ) and the FK cluster on G∗
connected with (aδbδ).

Statement of the theorems. We equip the space of continuous oriented curves by the following metric:

d(γ1, γ2) = infφ1,φ2 ‖γ1 ◦ φ1 − γ2 ◦ φ2‖∞, (1)

where the infimum is taken over all orientation-preserving reparameterizations of γ1 and γ2.

Theorem 1 (Convergence of spin Ising interfaces). Let Ω be a bounded simply connected domain with two distinct boundary points
(degenerate prime ends) a, b. Consider the interface γ δ in the critical spin Ising model with Dobrushin boundary conditions on
(Ωδ;aδ,bδ). The law of γ δ converges weakly, as δ → 0, to the chordal Schramm–Loewner Evolution SLE(κ) running from a to b
in Ω with κ = 3.

Theorem 2 (Convergence of FK Ising interfaces). Let Ω be a bounded simply connected domain with two distinct boundary points (de-
generate prime ends) a,b. Consider the interface γ δ in the critical FK Ising model with Dobrushin boundary conditions on (Ωδ;aδ,bδ).
The law of γ δ converges weakly, as δ → 0, to the chordal Schramm–Loewner Evolution SLE(κ) running from a to b in Ω with κ = 16/3.

Chordal Loewner evolution. Below we briefly explain the construction of Schramm’s SLE curves and introduce the notation
which is used in the next sections (see [13] for further background). Let γD be some continuous non-self-crossing (though
maybe self-touching) curve running in the closed unit disc D and parameterized by s ∈ [0,1] such that γD(0) = −1 and
γD(1) = +1. Let Φ : z 
→ i · (1 + z)/(1 − z) : D → H be the fixed conformal map from D onto the upper half-plane H and
γH = Φ(γD), thus γH starts at 0 and goes to ∞. Denote by Ks the hull of γH[0, s], i.e. the complement of the connected
component of H \ γH[0, s] containing ∞, and let t(s) = hcap(Ks) be the half-plane capacity of Ks . It is easy to see that t(s)
is nondecreasing but there could be situations when it remains constant (and, moreover, the hulls Ks remain the same) for
a nonzero time, even if γD is obtained as a limit of simple curves. E.g., (a) it might happen that, for some s ∈ (0,1), the tip
γH(s) of the growing curve is not visible from ∞ (meaning that γH explores some inner component of H \ γH([0, s])) or
(b) γH(s + ·) might travel along the boundary of Ks for a nonzero time, not changing the hull. Also, it might happen that
(c) γD reaches +1 for the first time before s = 1 or (d) t(s) remains bounded as s → 1 (if γH goes to ∞ very close to R).
We say that γD can be fully described by the Loewner evolution if none of (a)–(d) happens and t(s) is strictly increasing.
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In this situation, let gt :Ht = H \ Ks(t) →H be the conformal map such that gt(w) = w + 2t · w−1 + O (w−2) as w → ∞.
The Loewner equation is

dgt(w)

dt
= 2

gt(w) − Wt
, w ∈ Ht, (2)

where Wt is a continuous function which is usually called a driving term. Schramm–Loewner Evolutions – SLEs for short
– are the random curves constructed in the upper half-plane by solving the Loewner equation with Wt = √

κBt , κ > 0,
and then defined in all other simply connected domains (Ω;a,b) with two marked boundary points (e.g. in the unit disc
(D;−1,+1)) via conformal maps.

2. Tightness and crossing bounds

The proof of the main theorems starts with the extraction of subsequences from the laws of the discrete interfaces in
the topology associated to the metric (1). By recent results of two of us [12] (which strengthen classical results of [1]) the
tightness of the family {γ δ} follows once we can guarantee a crossing estimate called Condition G, see below. This condition
also guarantees that subsequential limits of γ δ can be fully described by the Loewner evolution with driving terms having
finite exponential moments.

Let Ωδ
C

be the polygonal domain (union of tiles) corresponding to Ωδ and φδ : (Ωδ
C
;aδ,bδ) → (D;−1,+1) be some

conformal maps. Note that until Section 3 we do not need to normalize φδ in any specific way.

Theorem 3. (See [12].) Let Ω be a bounded simply connected domain with two distinct degenerate prime ends a and b. If the family of
probability measures {γ δ} satisfies the Condition G given below, then both {γ δ} and {γ δ

D
} are tight in the topology associated with the

curve distance (1). Moreover, if γ δ
D

is converging weakly to some random curve γD , then the following statements hold:

(i) a.s., the curve γD can be fully described by the Loewner evolution and the corresponding maps gt satisfy Eq. (2) with a driving
process Wt which is α-Hölder continuous for any α < 1

2 ;
(ii) the driving processes W δ

t corresponding to γ δ
D

converge in law to Wt with respect to the uniform norm on finite intervals; more-
over, supδ>0 E[exp(ε|W δ

t |/√t )] < ∞ for some ε > 0 and all t.

Remark 1. The theorem combines several results from [12]. Note that, if the prime ends a,b are degenerate, the convergence
of γ δ outside of their neighborhoods implies the convergence of the whole curves.

Crossing bounds. We say that a curve γ δ makes a crossing of an annulus A(z0, r, R) = B(z0, R) \ B(z0, r), if it intersects
both its inner and outer boundaries ∂ B(z0, r) and ∂ B(z0, R). We say that the crossing is unforced if it can be avoided by
deforming the curve inside of Ωδ

C
; in other words, if it occurs along a subarc of γ δ contained in a connected component of

A(z0, r, R) ∩ Ωδ
C

that does not disconnect aδ and bδ .

Condition G. The curves γ δ are said to satisfy a geometric bound on unforced crossings, if there exists C > 1 such that, for any
δ > 0 and any annulus A(z0, r, R) with R/r > C such that ∂ B(z0, r) ∩ ∂Ωδ

C
�= ∅,

P
[
γ δ makes an unforced crossing of A(z0, r, R)

]
<

1

2
.

Remark 2. Actually, the results of [12] are based on the stronger Condition G2: the similar crossing bound should hold at
any stopping time τ . As our interfaces γ δ satisfy the domain Markov property (γ δ after time τ has the same distribution
as the interfaces in the slit domains Ωδ \ γ δ[0, τ ]), it is sufficient to check “time zero” Condition G for all domains Ωδ

simultaneously, see [12, Section 2] for further discussion.

Condition G deals with crossings of the simplest possible geometric shapes but it is not clear a priori if it is stable under
conformal maps. One of the ways to prove this fact is to use a larger class of shapes. Namely, instead of annuli one can
consider all conformal rectangles Q , i.e. conformal images of rectangles {z : Re z ∈ (0, �), Im z ∈ (0,1)}. For a given Q , we call
“marked sides” the images of the segments [0, i] and [�, � + i] and “unmarked” the other two sides, and call the (uniquely
defined) quantity � = �(Q ) the extremal length of Q . We say that γ δ makes a crossing of Q if γ δ intersects both of its
marked arcs.

Condition C. The curves γ δ are said to satisfy a conformal bound on unforced crossings if there exist L, η > 0 such that, for any δ > 0
and any conformal rectangle Q ⊂ Ωδ

C
that does not disconnect aδ and bδ ,

if �(Q ) > L and the unmarked sides of Q lie on ∂Ωδ
C
, then P

[
γ δ makes a crossing of Q

]
< 1 − η.
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Remark 3. It is shown in [12] that Conditions G and C are equivalent, in particular Condition G is conformally invariant.
Thus, if these conditions hold for the curves γ δ , then they hold for γ δ

D
too.

There are two approaches to check that interfaces γ δ fit within the setup described above. The first is straightforward: to
derive the needed uniform estimate for all shapes (parts of annuli or conformal rectangles), including those with irregular
boundaries. Recently, three of us have proved such an estimate, following the ideas from [8] and relying on the new discrete
complex analysis techniques developed in [3].

Theorem 4. (See [4].) For any L > 1 there exist η > 0 such that for any discrete domain (Ωδ;aδ,bδ, cδ,dδ) with four marked boundary
points and L−1 < �d(Ωδ; (aδbδ), (cδdδ)) < L, one has

η < P
[
there is an FK cluster connecting

(
aδbδ

)
and

(
cδdδ

)
inside of Ωδ

]
< 1 − η

uniformly over all possible boundary conditions on ∂Ωδ , where �d denotes the discrete extremal length.

Note that, in order to verify Condition C for FK Ising interfaces in polygonal domains Ωδ
C

, one does not need to consider
very small conformal rectangles near ∂Ωδ

C
as γ δ never visits 1

4 δ neighborhood of ∂Ωδ
C

due to our choice of the square-octagon
lattice as the graphical representation of the model, see [12, Section 4.1.4]. Thus, the result follows from Theorem 4 since
�d(Q ) and �(Q ) are uniformly comparable.

The second approach is to use the monotonicity of crossing probabilities for specific boundary conditions. In [12, Sec-
tion 4.1.6], two of us have shown that it is enough to consider only two particular types of regular annulus-like shapes
with alternating wired/free/wired/free boundary conditions. In this case, the needed estimate can be easily extracted from
[7, Theorem 1.3]. It is worthwhile noting that two approaches described above have different advantages: the second does
not require hard technicalities while the first can be applied in more general situations, e.g. to the analysis of branching
interface trees.

Remark 4. As the crossing bound for the FK model with alternating boundary conditions is proved, the upper bound for
the probability of a “+” crossing in the spin model with +/free/−/free/+/free/−/free boundary conditions (and so, by
monotonicity, with +/ − / + /− ones) can be derived using the Edwards–Sokal coupling, see [4].

3. Identification of the limit via convergence of martingale observables

We identify the scaling limits of γ δ along subsequences following the generalization of the approach from [14], outlined
in [17]. It requires the identification of the scaling limit of a non-trivial martingale observable, known so far for but a few
lattice models. We sketch the proof of Theorem 1 starting with [7, Theorem 1.2], the similar derivation of Theorem 2 from
[18, Theorem 2.2] can be found in [9, Section 6.3].

From now onwards we fix the maps φ : (Ω;a,b) → (D;−1,+1) and φδ : (Ωδ
C
;aδ,bδ) → (D;−1,+1) so that φδ(z) → φ(z)

as δ → 0 uniformly on compact subsets of Ω . Let w(z) = Φ(φ(z)) and wδ(z) = Φ(φδ(z)).

Proof of Theorem 1. Let F δ
n be the discrete fermionic observable in the domain (Ωδ

n ;γ δ
n ,bδ), appropriately normalized at

bδ , where Ωδ
n denotes the connected component of the slit domain Ωδ

C
\ (γ δ

0 γ δ
1 . . . γ δ

n ) containing bδ , see [7, Section 2.2.1].
Let gδ

t : Hδ
t = Φ(φδ(Ωδ

n )) → H be the corresponding Loewner evolutions with driving terms W δ
t , reparameterized by the

capacity. Theorems 1.2 and 5.6 of [7] state that

∣
∣F δ

n(z) − Mδ
t (z)

∣
∣ → 0 as δ → 0 uniformly over all possible domains Ωδ

n and all z

in the bulk of Ωδ
n , where Mδ

t (z) = (
∂z

[−Gδ
t

(
wδ(z)

)−1] )1/2
and Gδ

t (w) = gδ
t (w) − W δ

t .

Recall that, for a given δ > 0 and zδ in Ωδ , the value F δ
n(zδ) is a martingale with respect to the filtration (F δ

n )n�0, where
F δ

n is generated by the first n steps of γ δ . It is easy to see that, for all driving terms, Im Gδ
t (w) � 2

√
t , as long as Im w �

3
√

t . In particular, Mδ
t (z) are uniformly bounded and equicontinuous on compact subsets of Ω , if δ is small enough and

t � 1
9 (Im w(z))2.

Theorem 3 gives us both the convergence of curves γ δ and their driving processes W δ
t , at least along subsequences.

Moreover, a.s., the limit can be fully described by the Loewner evolution with a continuous driving process Wt . Using the
convergence wδ → w , the equicontinuity (in t) of gδ

t and the convergence of Gδ
t to Gt in the bulk of Ht (which follows

from the convergences of W δ
t to Wt ), we conclude that

for any z ∈ Ω, the process Mt(z) = (
∂z

[−Gt
(

w(z)
)−1])1/2

, t � T (z), where Gt(w) = gt(w) − Wt

and T (z) = 1 (
Im w(z)

)2
, is a martingale with respect to the filtration (Ft)t�0 generated by Wt .
9
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Recall that Wt is continuous a.s., and let τ = τ (z) be the first time such that Im w(z) = 3(
√

τ + |Wτ |). Starting with the
expansion Gt(w) = w − Wt + 2t · w−1 + O (w−2) as w → ∞, one directly gets

Mt∧τ (z) = (
w ′

z

)1/2
w−1 · [1 + Wt∧τ · w−1 + (

W 2
t∧τ − 3(t ∧ τ )

) · w−2 + O
(

w−3)], w = w(z), (3)

where the O -bounds are uniform with respect to both t and z. Since (3) is a martingale for any given z ∈ Ω and Wt has
a finite exponential moment, we can exchange the asymptotic expansion with the conditional expectation and conclude
that both coefficients Wt and W 2

t − 3t are martingales. As Wt is almost surely continuous, Lévy’s theorem implies that
Wt = √

3Bt , where Bt is a standard Brownian motion, for any subsequential limit of the curves γ δ . �
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