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As an application, we obtain an optimal Penrose-type inequality for this new mass
for asymptotically hyperbolic graphs with a horizon type boundary X, provided that a
dominant energy condition Zk > 0 holds.
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RESUME

En utilisant la courbure de Gauss-Bonnet, on introduit une nouvelle masse d’ordre
supérieur — la masse de Gauss-Bonnet-Chern -, sur des variétés asymptotiquement
hyperboliques. On montre qu’il s’agit d’un invariant géométrique. On démontre également
le théoréme de masse positive sur des graphes sur l'espace hyperbolique H" et des
inégalités d’Alexandrov-Fenchel a poids dans H" pour toute hypersurface convexe de type
horosphérique. Ainsi, on obtient une inégalité de type Penrose optimale pour cette masse
sur toute variété asymptotiquement hyperbolique qui est graphe sur H" avec un horizon
au bord, a condition que la condition d’énergie dominante fk > 0 soit satisfaite.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Riemannian positive mass theorem (PMT), “Any asymptotically flat Riemannian manifold M" with a suitable decay order
and with nonnegative scalar curvature has the nonnegative ADM mass”, plays an important role in differential geometry. This
theorem was first proved by Schoen and Yau [15] for manifolds of dimension n < 7 and later for spin manifolds by Witten
[17] using spinors. A refinement of the PMT is the Riemannian Penrose inequality:
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where mapy is the ADM mass of the asymptotically flat Riemannian manifold with a horizon X and |X| denotes the area
of X. (1.1), was proved by Huisken-Illmann [11] and Bray [1] for n = 3. Later, Bray and Lee [2]| generalized Bray’s proof
to the case n < 7. Recently, Lam [12] gave an elegant proof of PMT and (1.1) in all dimensions for an asymptotically flat
manifold that can be realized as a graph in R"*1.

The ADM mass, together with the positive mass theorem, was generalized to asymptotically hyperbolic manifolds in
[3,16,19]. For this asymptotically hyperbolic mass, the corresponding Penrose conjecture is: “For asymptotically hyperbolic
manifold (M", g) with an outermost horizon X, its mass satisfies:
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provided that the dominant energy condition:

Rg > —n(n—1), (1.3)

holds”. Here Rg denotes the scalar curvature of g. Recently, motivated by the work of Lam [12], Dahl, Gicquaud, and
Sakovich [4], on the one hand, and de Lima and Girdo [5], on the other hand, proved the Penrose inequality (1.2) for
asymptotically hyperbolic graphs over H" with the help of a weighted hyperbolic Minkowski inequality, or a weighted
hyperbolic Alexandrov-Fenchel inequality:
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if X' is star-shaped and mean-convex (i.e. H > 0), which was proved by de Lima and Girdo [5].
Recently motivated by the Gauss-Bonnet gravity, we have introduced the Gauss-Bonnet-Chern mass mgpc for asymptot-
ically flat manifolds by using the following Gauss-Bonnet curvature:
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where Rijs’ is the Riemannian curvature tensor. One can check that Lq is just the scalar curvature R. For general k, it is just
the Euler integrand in Chern’s proof of the Gauss-Bonnet-Chern theorem if n = 2k. See a survey of Zhang [18]. A systematic
study of L, was first given by Lovelock [13]. The Gauss-Bonnet-Chern mass mgpc for the asymptotically flat manifolds is
defined in [6] by:

(n — 2k)! il
m /Pld{)mamgj,v,- du, (1.6)
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where wy_1 is the volume of (n — 1)-dimensional standard unit sphere and S; is the Euclidean coordinate sphere, du is the
volume element on S, induced by the Euclidean metric and v is the outward unit normal to S, in R". Here the (0, 4)-tensor
P is defined by:
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This (0, 4)-tensor P, has a crucial property that it is divergence-free, which guarantees that the Gauss-Bonnet-Chern mass
is well defined and is a geometric invariant in [6]. In [6] and [7], we prove a positive mass theorem in the case where M
is an asymptotically flat graph over R" or M is conformal to R", respectively. For our mass mgpc, a corresponding Penrose
conjecture was proposed in [6]:
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Moreover, we proved in [6] that this conjecture is true for asymptotically flat graphs over R™\£2 by using classical
Alexandrov-Fenchel inequalities.
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2. Hyperbolic Gauss-Bonnet-Chern mass and its Penrose inequality

In the paper [8], motivated by our previous work, by using the Gauss-Bonnet curvature we introduce a higher-order
mass for asymptotically hyperbolic manifolds, which is a generalization of the mass introduced by Wang [16] and Crusciel-
Herzlich [3]. See also [9,14,19]. However, if we use directly the Gauss-Bonnet curvature L, we can only obtain a mass
proportional to the usual hyperbolic mass, rather than a new one. In order to define a higher-order mass for asymptotically
hyperbolic manifolds, the crucial observation is a slight modification of the Gauss-Bonnet curvature. More precisely, on a
Riemannian manifold (M", g), we consider a modified Riemann curvature tensor:

Riem;jsi(g) = Rijsi(g) = Rijsi(8) + Zis&ji — Silgjs (2.1)

and a new Gauss-Bonnet curvature with respect to this tensor Riem:
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The tensor '15(k) has also the crucial property of being divergence free, which enables us to define a new mass.

Let us assume now that 2 <k < % We first introduce a “higher-order” mass for asymptotically hyperbolic manifolds with
slower decay.
Definition 2.1. Assume that (M", g) is an asymptotically hyperbolic manifold of decay order 7 > # and for V e Ny :=
{V € C®(HM) | Hess?V = Vb}, ka is integrable on (M", g). We define the Gauss-Bonnet-Chern mass integral with respect
to the diffeomorphism @& by:

HP(v) = 11m/ (VVlel]—e,]V,V)P(,) Do dpa, (2.4)
S

where e;jj := ((@71)*g)jj —b;j and V denotes the covariant derivative with respect to the hyperbolic metric b.
This definition is motivated by the work of ChruSciel and Herzlich [3]. See also [9,14,16,19].

Theorem 2.2. Suppose that (M", g) is an asymptotically hyperbolic manifold of decay order T > % and for V € Ny, ka is inte-

grable on (M", g), then the mass functional H,‘f (V) is well defined and does not depend on the choice of the coordinates at infinity
used in the definition.

From the mass functional Hl‘f on Np, we define a higher-order mass, the Gauss-Bonnet-Chern mass for asymptotically
hyperbolic manifolds as follows:

H . ®
m, :=c(n,k inf H, (V), 2.5
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that the infimum in (2.5) is achieved by:

where c(n, k) = is the normalization constant given in (1.6) and 7 is a Lorentz inner product. One may assume

V= V(O) =coshr,

where r is the hyperbolic distance to a fixed point xg € H". Therefore, we fix V = V) = coshr.

Theorem 2.3 (Positive Mass Theorem). Let (M", g) = (H", b + V2df @ df) be the graph of a smooth asymptotically hyperbolic
function f : H" — R which satisfies V Ly is integrable and the graph (M™", g) is asymptotically hyperbolic of decay order T > ﬁ
Then we have:

0=, k) __Vh — __dv,. (2.6)
2 14 V2|V f2

In particular, L, > 0 implies m > 0.
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The condition:

Iy >0, (2.7)

is a dominant energy condition, like (1.3). Such a beautiful expression (2.6) was found first by Lam for the scalar curvature
R for asymptotically flat graphs over R", and was generalized for the Gauss-Bonnet curvature in [6]. Dahl, Gicquaud, and
Sakovich [4] obtained this formula for m]lHI for asymptotically hyperbolic graphs in H". See also the work of de Lima and
Girdo [5] and of Huang and Wu [10].

Furthermore, if the manifold is an asymptotically hyperbolic graph with a horizon boundary, we establish a relationship
between our new mass and a weighted higher-order mean curvature, as follows.

Theorem 2.4. Let 2 be a bounded open set in H" with boundary ¥ = 052. Assume (M", g) = (H" \ £2, b+ V2df ® df) is an
asymptotically hyperbolic manifold with a horizon X' (i.e. 9 M = 92 C M is minimal) which satisfies that V Ly is integrable. More-
over, assume that each connected component of X is in a level set of f and |V f (x)| — oo as x — X. Then:

1 VI 2k — 1)!
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M X
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where oy, denotes k-th mean curvature of X' induced by the hyperbolic metric b.
In order to obtain a Penrose-type inequality for the hyperbolic mass m,iH for asymptotically hyperbolic graphs with a
horizon, we need to establish a “weighted” hyperbolic Alexandrov-Fenchel inequality. A hypersurface in H" is horospherical

convex if all principal curvatures are larger than or equal to 1.

Theorem 2.5. Let X be a horospherical convex hypersurface in the hyperbolic space H". We have:

n n—2k K
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Equality holds if and only if X is a centered geodesic sphere in H".

When k =1, inequality (2.8) is just (1.4), which was proved by de Lima and Girdo in [5]. These inequalities have their
own interest in integral geometry as well as in differential geometry.

As a consequence of Theorems 2.4 and 2.5, the Penrose inequality for the Gauss-Bonnet-Chern mass m,iH for asymptoti-
cally hyperbolic graphs with horizon boundaries follows.

Theorem 2.6 (Penrose Inequality). Let §2 be a bounded open set in H" and X' = 3£2. Assume (M", g) = (H"\ 22,b + V2df @df)is
an asymptotically hyperbolic manifold with a horizon X which satisfies that V Ly is integrable. Moreover, suppose that each connected
component of X is in a level set of f and |V f(x)| — oo as x — X. Assume that each connected component of X' is horospherical
convex, then:

() @) ) 2
provided that
I, >0.

Moreover, equality is achieved by the anti-de Sitter Schwarzschild type metric:

-1
2m
&ads-Sch = (l + 102 - pﬁz) dp2 + ;02 de?, (2.10)

which is a generalization of the ordinary one. Here p = sinhr and d®? is the round metric on S"~ 1.
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