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RESUME

Dans cette Note, nous étudions I'existence de solutions a basse ou a haute énergie pour
une classe de problémes elliptiques contenant un terme non linéaire oscillatoire autour
de l'origine ou a l'infini. Nous mettons en évidence l'effet de compétition entre la non-
linéarité oscillatoire, le terme a croissance polynomiale et les valeurs d’'un parametre réel.
Les preuves combinent des méthodes topologiques et variationnelles.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Soit £2 c RN (N > 3) un domaine borné et régulier, 8 € L>(£2), »eR, >0 et f:[0,00) - R une fonction continue
qui oscille autour de I'origine ou a I'infini. Nous supposons que A : £2 x RN — RN est une fonction continue telle que, pour
tout (x,£) € 2 x RN,

AX &) E>Ti[EIP et |ARX&)| < DalgP,

oup>1letrly,Iy>0.
Dans cette Note, nous étudions le probléme non linéaire :
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—divA(x, Vu) = A8x)u? + f(u) dans £
u>0 dans 2 (P)
u=0 sur as2.

Le premier résultat de cette Note porte sur le cas olt f a des oscillations autour de I'origine. Nous montrons d’abord
que le probléme (P) a une infinité de solutions «a basse énergie» si ¢ > p — 1 et au moins un nombre fini de solutions si
0 <q < p— 1. Plus précisément, si ¢ > p — 1, nous montrons I'existence d'une suite {u;} C Wé’p(Q) de solutions faibles du
probléme (P) telle que :

lim |ju;jll,,,1 = lim ||uj|lte2) =0.
jdim il o) jlim llujlle )

Dans le cas ot f a des oscillations a I'infini, il existe une infinité de solutions {u;} C W(;'p(.Q) si0<gq<p-—1etau
moins un nombre fini de solutions si g > p — 1. De plus, si 0 <q < p — 1, alors lim_, ;o ||t (2) = +00.

1. Introduction

Competition phenomena in elliptic equations have been widely studied in the literature in different contexts. After the
seminal work [1], where Ambrosetti, Brezis and Cerami studied a Laplacian equation involving a concave-convex nonlinear-
ity, a lot of papers appeared on this subject. Also when dealing with singular terms, the interactions with different type of
nonlinearities were investigated: see, for instance, Ghoussoub and Yuan [3], Pucci and Servadei [5,6] for equations involving
superlinear and subcritical terms.

In this Note, we are interested in problems driven by general operators of p-Laplacian type involving oscillatory terms,
in the presence of a concave or convex power. Usually, equations involving oscillatory nonlinearities give infinitely many
distinct solutions, but the presence of an additional term may alter the situation.

Let £2 c RN (N > 3) be a bounded domain with smooth boundary, ¢ > 0, A € R, and let f : [0, +00) — R be a continuous
function. Suppose that B € L°(£2) is a potential that is indefinite in sign. We also assume that A: 2 x RN — RN is a
continuous function such that:

A &) -£>NEIP and |A(x,&)| < plEP~" forall (x,8) € 2 x RN,

for some p > 1 and 0 < Iy < I,. Suppose that A derives from a potential, namely A = V:a, where a: £ x RN - R is
continuous, a(x,0) =0, a(x, £) =a(x, —&) for all (x,£) € 2 x RN, and a(x, -) is strictly convex in RN for all x € £2.
We are concerned with the nonlinear Dirichlet problem:
—divA(x, Vu) = A8xul + f(u) in
u=0 in 2 (1)
u=0 onos2.

2. Oscillation near the origin

Set F(s) := [, f(t)dt and assume that:
f(s) F(s) . F(s)

liminf —= =: —{p € [—00, 0), —o0 < liminf —= < limsup —= = +o0. (2)
s—>0t sP~1 s—>0+ P s>o+ SP
Examples. (i) Assume that o, o, y e R satisfy 1 <o +1 <o < p and y > 0. Define:

as® (1 —sins )+ 0s* 7 lcoss ™ — pysP~1 ifs>0

f®= { 0 ifs=0. 3)

(ii) Assume that o, 0 and y e R are such that 1 <a < p, 0 >0, « —o > 1 and y > 0. Define:

as® 1 cos?s7% —205* % 1coss™% sins™@ — pysP~! ifs>0

[ = { 0 ifs=0. “)

Then the functions defined by relations (3) and (4) have oscillation near the origin, in the sense described by hypothe-
sis (2).
The main result in this section is the following.

Theorem 2.1. Assume that f satisfies condition (2). If either
a) q=p—1,49€(0,+00) and AB(X) < Ao a.e. x € §2 for some Ao € (0, £g) or

b) g=p —1, £y =400 and 1 € R is arbitrary or
c) q>p — 1and A € Ris arbitrary,
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then there exists a sequence {u}; in Wg’p(ﬂ) of distinct weak solutions of problem (1) such that:

lim uill,, 1, = lim ||ui||fe(o)=0.
im gl gy = M)

Assume that 0 < q < p — 1. Then for every k € N there exists A, > 0 such that problem (1) has at least k distinct weak solutions
ug,...,Ug € W "P(§2) such that ||uj||W1 Py S <1/jand ||ujllpeey < 1/jforall j=1,... k, provided that |\| < Ay.

Sketch of the proof. Consider the auxiliary problem
—divAx, Vu) + K@) [ulP2u =h(x,u) in$ (5)
u=0 onos2.

Throughout this Note we assume that K € L>°(§2) with essinfyco K(x) > 0, while h: 2 x [0, +00) — R is a Carathéodory
function satisfying h(x, 0) =0 for a.e. x € 2. Set H(x, s) := fosh(x, t)dt, for all s e R.
A key ingredient in the proof of Theorem 2.1 if ¢ > p — 1 is the following multiplicity property.

Lemma 2.2. Assume that the following hypotheses are fulfilled:

there exists § > 0 such that sup |h(-,s)| € L™°(£2); (6)
se[0,s]

there exist two sequences {8;}j and {n;}; with0 < njy1 <8; <njand lim nj=0such that h(x,s) <
j=too

fora.e. x € 2 and forevery s €[5, nj], j € N; (7)
,S . H(x,s .
—o00 < liminf ) < limsup (—) = +o0 uniformly for a.e. x € £2. (8)
s—>0t S s—>0+ sP

. Then there exists a sequence {uj}j C W;”’(Q) of distinct non-trivial non-negative weak solutions of problem (5) such that
lim;_, 400 ||uj||W(1),p(9) =limj_, oo lujllre2) =0.

Returning to the proof of Theorem 2.1, let us first assume that ¢ = p —1, £ € (0, +-00), and A € R is such that A8(x) < Ag
ae. x e 2 for some Ao € (0, £g). Let us choose Xg € (Ao, £o) and let K(x) := ig — AB(x) and h(x,s) := XosP~1+ f(s).

Next, we assume that g =p — 1, £g = +00, and A € R. In this case we choose Ao € (Ao, £o) and set K(x) := Ao and
h(x, ) := OBX) + k)P~ + f(s). ) )

Ifg>p—1and A R, we take Xg € (0, £o) and define K(x) := Ao and h(x, s) := AB(X)s? + AosP~1 + f(5).

In all these cases, by straightforward computation, we deduce that K and h satisfy the assumptions of Lemma 2.2.
Thus, problem (5) has infinitely many solutions {uj}; satisfying lim;_, 4 ||uj||W1,p(Q) = limj_, ;o0 lttjllo(2) = 0. Due to

0

the choice of K and h, we also obtain that u; is a weak solution of problem (1).

Let us now assume that 0 < q < p — 1. We associate with problem (5) the energy functional £k p : W(}”’(Q) — R defined
by Ex p(u) = [ ax, Vu(x)) dx + %fg K@)lu@)|P dx — [ H(x, u(x))dx.

The key ingredient in this case is the following result.

Lemma 2.3. Assume that the following hypotheses are fulfilled:

there exists M > 0 such that ]h(x s)‘ M for a.e. x € §2 and for any s > 0; (9)
there exist § and n, with 0 < § < n, such that h(x, s) <0 for a.e. x € §2 and for any s € [§, n]. (10)
Then

i) the functional £, is bounded from below on W' and its infimum is attained at some u, € W", where W' := {u €
wl p(Q) ||u||LoC(9) n}, and n is the positive parameter given in (10);
i) uy e [0, 8], where § is the positive parameter given in (10);
iii) uy) is a non-negative weak solution of problem (5).

Fix Ao € (0, £9) and define K(x) := g and h(x,s,A) := AB(X)s? + AgsP~! + f(s). Using the fact that h(x, s, 0) = kosP "1 +
f(s), we deduce that there exist sequences {8;};, {;};, {sj}; and {A;}; such that A; >0, 0 <nj;1 <é8; <sj<nj <1,
limj_, 400 7j =0, and h(x,s,1) <0 ae. xe 2, for all s [§;,n;], A €[—A;j,A;] and j € N large enough.

For any j e N, we define hj(x,s, A) := h(x, Tn; (s),A) and Hj(x,s,1) := fos hjx,t,2)dt, for xe £2, s >0 and X € [—Aj, Aj].
By straightforward computation, we deduce that h; satisfies all the assumptions of Lemma 2.3 for j large, with § =§; and
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n=mn;. For any jeN, let &, be the energy functional &; := 51(,11]-(.,.,)\)- By Lemma 2.3, we deduce that for j sufficiently
large and provided that |A| < Aj, there exists u;j; € W' such that:

min &) = E&;j;(Uj) (11)

uewi

uj(x)€[0,8;] forae.xe£2, (12)
and

uj ; is a non-negative weak solution of (5) with h = h;. (13)

Since for j sufficiently large, 0 < uj;(x) <dj <nj a.e. x € 2, we have hj(x,u;;(x),A) =h(x, uj(x), 1), so that u;, is a
non-negative weak solution of problem (1), provided that j is large and |A| <A ;.
It remains to prove that for any k € N, problem (1) admits at least k distinct solutions for suitable values of A. At this

purpose, we note that for any u € Wé’p(.Q):

gj,x(u)zfa(x, Vu(x)) dx — q%/ﬂ(x)]u(x)!qﬂ dx—/F(u(x))dx
2

2 2

e A g+1
=Ej o) P fﬂ(x)|u(x)} dx.
2

Claim. There exists an increasing sequence {6;}; such that 6; <0, limj_, ;. 0; =0 and 0;_1 < & o(ujo) <0; for j > j*,
with j* e N.

First, note that the function (x, s) — h(x, s, 0) = AosP~! + f(s) verifies all the assumptions of Lemma 2.2. Thus, there exist
£ >0 and ¢ € (0,1) such that F(s) > —¢sP for all s € (0, ) and there is a sequence {5;}; such that 0 <§; — 0 as j — +o0
such that for all L >0, F(s;j) > Ls?7 for j e N large enough. Also, since §; \( 0 as j — 400, we can choose a subsequence of
{8}, still denoted by {8;};, such that 5; <4§; for all jeN.

Now, for any s > 0 we need to define the function zs as follows:

0 ifxe £\ B(xp,1)
zs(x):={ E(r—|x—xol) ifxeB(xo,r)\ B(x0,7/2) (14)
s ifx € B(xo,1/2),

which is such that z; > 0 in £, zs € Wé’p(.Q) and ||zs||r (@) = 5. Here xp € £2 and r > 0 is such that B(xp,r) C §2. In the
following, we denote: Z; := z;;.
Now, let us fix j € N sufficiently large. We have & o(uj0) < &j0(Zj) <0 and

Lljvo(x) (Sj
Sj’O(ijo)2—[F(Uj,0(x))dx>—/ / |f(s)|dsdx>—f/|f(s)|dsdx2dj.
2 2 0 20

Note that {c;}; and {d;}; are such that d; <c; <0 for any j e N and lim;j_, ;o c; =lim;_, ;o d; = 0. Thus, we can extract
two subsequences, still denoted by {c;}; and {d;};, such that the above properties hold true and the sequences {c;}; and
{dj}; are non-decreasing. Now, we define:

) cj if jeNiseven
771 d; ifjeNisodd.

We deduce that for i large enough 621 =di_1 < dy;i < &2i,0(U2i,0) < C2i = 62, which proves the claim.
Now, for any j > j*, let:

o @ DE o0 —0i-1) e DO = EjoWj0)
P Bl + DLE2) a 1Bl (@) +1

Note that k; and k;f are strictly positive and they are independent of A. For any fixed k € N, let:

(15)

s ) ) ’ / ” "
Ak.—lTlll‘l{)\.J*.F],...,)\]*+[<,)\-j*+l,..., Jrko j*+1,...,)\.j*+k}.

Of course, A > 0 is independent of A. Also, if |A| < A, then |A| <A;j for any j= j*41,..., j*+k. As a consequence of this,
for any A € R with |A| < Ag, uj; is a non-negative weak solution of problem (1) for any j= j*+1,..., j* +k. Let us show
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that these solutions are distinct. At this purpose, note that uj; € W' and so &£ o(uj,0) = min, yn; o) < EjoUj ).
Thus, for any A such that |A| < Ay, we obtain:

Einjn) =E&joujy) — /ﬂ(x)\ujx(x)’q dx > &jo(ujo) — IIﬁIILoo(:z)anll(Q)

/

Ay )\j
>E&iouig) — —— o L(2)=Eio(Uig) — —— o NL(2)=0i_1, 16
5,0(Uj0) q+1||5||L ) L(82) = Ejo(ujo) q+1||5||L (@) L(82) =64 (16)

for any j=j*+1,..., j* +k. On the other hand, using the fact that ||Zj|;~2) =5; <8 <nj <1, for any A with |A| < Ay
we deduce that:

. ; 5 A 5
Ein(uj) = min &) <& (Z)) =Ejoz)) — —/ﬁ(X)IZj(X)Iq+1 dx
uewi q+1
2

~ A ~ q+1 = A f
<&joiE) — ——= Zj dx < &jo(zj) — —— d
i,0(Zj) q+1 / ,3(X)| ](X)‘ X i,0(Zj) q+1 B(x)dx
{xe£2: AB(x)<0} {xe$2: AB(x)<0}
- [\ / N A /
<E; . T dx < &; . - d
IRICHR S |B0)|dx 0@+ =g |B(x)| dx
{xe82: AB(x)<0} 2

//

Ay
<5}0(21)+ llﬁllLl(g) &j, o(Z])+ ”:B”LI(_Q)—QJ (17)

forany j=j*+1,...,j"+k
Hence, by (16), (17) and the properties of {0;};, we deduce that for any j=j*+1,..., j"+k

0j—1 <&ja(ujy) <0 <0, (18)
which yields that &, (u1,,) <--- < &1 (ukx) < 0. Thus, the solutions {ujy,...,uk,} are all distinct and non-trivial, pro-
vided that |1] < Ag.

Finally, we estimate the Wé’p—norm of uj,.Forall j=j*+1,...,j* +kand |[A] < Ak, we have:
nooop A / g1 /

—|u; <&+ —— X)|uja(x dx+ [ F(u;;(x))dx

D || ],A.”W(;,p(g) j,x( ],k) q+1 ﬂ( )| ],k( )| ( j,A( ))
Q Q
8
|A] q+1 Ay =
<0+ —— oond:  + (s)|dsdx < —— roo(2)0i + Cdi,
i qul||/3|| (@)8; |f(s)] q+1||/3|| ()0 j
20
for a suitable positive constant C. It follows that il y1r ) < 58}”’, where C > 0. Since §; — 0 as j — +oo, without loss
0

of generality, we may assume that §; < min{C~?, 1}1/jP, and this gives Nujally, <1/jforall j=j*+1,...,j"+k,

1 p
) =
provided that |A| < Ag. This completes the proof of Theorem 2.1. O

3. Oscillation at infinity

In this section, we assume that the nonlinear term f satisfies the following assumptions:

llmme =: —ls € [—00, 0); (19)
s——+oo sp—1
F
—00 < llmmfﬁ < lim ﬁ = 400. (20)
s—>+o0 S sa+oo 4

A function satisfying these conditions is f(s) = as* (1 —sins®) — 0s**%~1 coss® — pysP~!, where &, o and y are
such that « > p, 0 >0 and y > 0.
In this setting, the counterpart of Theorem 2.1 can be stated as follows.

Theorem 3.1. Assume that f satisfies relations (19), (20), and f(0) = 0. If either

Q) q=p—1,40 €(0,+00) and LB(X) < L a.6. X € §2 for some Ay, € (0, £x) OF
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b) g=p —1, £ox =400 and 1 € R is arbitrary or
¢) 0<q < p—1andxeRisarbitrary,

then there exists a sequence {u;}; in Wé’p(.Q) of distinct weak solutions of problem (1) such that
) lim ||u]‘||Lo<:(_Q) = +00.
J—=>+oo

Assume that q > p — 1. Then for every k € N there exists A, > 0 such that problem (1) has at least k distinct weak solutions
ug,...,Ug € Wé’p(.Q) satisfying |lujllpe(2y = j—1forall j=1,...,k, provided that |A| < Ay.

We refer to [4] for the proof and several related results. We also refer to the marvelous recent book by Ciarlet [2] for
the rigorous qualitative analysis of many models described by nonlinear partial differential equations.
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