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RESUME

Pour un espace symétrique extrinséque M dans Il'espace-temps de Minkowski, nous
prouvons que, si M est de type espace et a courbure moyenne nulle, alors M est totalement
géodésique, tandis que, si M est de type temps a courbure moyenne nulle, il s’agit alors
d'une sous-variété totalement géodésique ou d'une hypersurface.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a non-degenerate submanifold in Minkowski space-time RY. It is called a spacelike, timelike submanifold if its
tangent space T,M is spacelike, timelike for each x € M, respectively. The reflection for the affine isometry s, :R} — R is
defined by:

Sx(X) = x, Slr,m = —id, Sel(r oMyt = id.

We call M a symmetric submanifold or extrinsic symmetric space if it is invariant under the reflection at each affine normal
space (TxM)<, that is, sxy(M) = M for all x € M. The covariant derivation of the second fundamental form « and the above
reflection sy give:

(Vja)(v, W) = S, (Vja)(v, w) = (Vj;ua)(s*v, SeW) = —(Vja)(v, w)

for all xe M and u, v, w € TyM. Thus an extrinsic symmetric space has the parallel second fundamental form. The converse
holds due to Striibing in [8].
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In [3] Ferus showed that if an extrinsic symmetric space M in Euclidean space R" has zero mean curvature, then M is
totally geodesic. Here we consider an extrinsic symmetric space M in R} whose mean curvature is zero. And we show the
following theorem:

Theorem. Let M be an extrinsic symmetric space in RY. If M is spacelike with zero mean curvature, then it is totally geodesic. And if
M is timelike with zero mean curvature, then it is totally geodesic or it is a flat hypersurface.

2. Proof of the theorem

The Lie algebra of an indefinite extrinsic symmetric space is constructed in [6]. We recall some necessary notations in
[6] for the proof of the theorem. Let M C V =R} be an extrinsic symmetric space and K = (sx; x € M) C O(V) be the
group generated by all reflection sy. A one-parameter subgroup of the group K determined by a geodesic y, t —> pi(y) :=
Sy(t/2) © Sy (0) = Sexp(v/2) © Sy(©) With v =y'(0) is called a transvection. We denote by K the identity component of the Lie
group generated by transvections [6, Lemma 3.1] and let M = K /K, where K is the isotropy group for some fixed x € M.
Let ¢ be the Lie algebra of the group K. Then we have a Cartan decomposition ¢ = £, + £_ with respect to the involution o
given by the conjugation of the reflection sy, which satisfies [1,6]:

[t ]1=¢,. (1)

The infinitesimal transvection t, € £_ is given by its differential dps(y)|s—o. We identify ¢_ with the tangent space TyM
and define a metric on ¢_ such that (t,,ty)e_ = (v, w) for any v, w € TyM. The isotropy action on the tangent space is
assumed to be effective in order to get the non-degenerate metric on ¢_.

Put (¢, €¢_) =0 and define the metric on £ as:

(A Itv. twl)y, =([A. 0] tw), @)

for all Aet, and v, w € TyM. This is well defined by the property of the curvature tensor R(v, w)u = —[[ty, tw], ty] of an
intrinsically symmetric space M and the effective isotropy action. Then we get an ad(f)-invariant metric on ¢. Put p_ = TyM
and p, = TxM"’. A Lie algebra ¢ is extended to a Lie algebra g =€+ p [2] by defining a skew symmetric product [,] on
g=t+p:

[A,vI=Awv, (A v, w]), = (A, w), 3)

where * denotes the linearized action of A. Note that there is another Cartan decomposition g = g4 + g— by putting
g+ =ty +prand g =t +p_.
The following bracket relations of an extrinsic symmetric space will be used to calculate the Killing form B¢:
[ty, w]l=a(v,w), [ty,n]=—=Syv, (4)

where « is the second fundamental form and S is the Shape operator [2,4,5]. And since the linear maps t:TyM — £_,
vty and S:(TyM)Lt — S(TxM), n — Sy are equivariant with respect to the action of £, we see that:

[AvtV]=tA*V7 [A*,Sn] =SA*r] (5)

for all Aety [2].

The Killing form of a Lie algebra g is defined by B?(v, w) = trace(ad(v) o ad(w)) for all v, w € g. Let us denote by
BY(v,w) = > i€i{ad(v)ad(w)u;, u;) the partial trace of a non-degenerate subspace U in g, where {u;} is an orthonormal
basis of U with (u;, uj) = €;8;;. The Killing form of a symmetric space is well known. Let £ be a Lie algebra of a symmetric
space with a Cartan decomposition ¢ = ¢, + £_ satisfying [¢_,¢_] = ¢,. Since ad(t,) is skew symmetric for t, € £ and
maps £_ to £, and vice versa, we have BY- = B'+ on £_. Hence we get

BY(ty,tw) = 2B (ty, tw).
For an orthonormal basis {te;} of £_ with sign €; = (te;, t¢;), the Killing form Bt on t_ is calculated by:
BY(ty. tw) =2 ifad(ty) ad(tw)te;. te;)
=2 €[ty [tw. te,]] te;) = =2 €il[[tw. te,]. 0] te)) =2 ) €(R(w. ep)v. eq).
So we obtain:
BE(ty, tw) = —2Ric(ty, tw). (6)

Let us denote by H the mean curvature of an extrinsic symmetric space M in RY. The Killing form B® of an extrinsic
symmetric space is obtained (see [6]):
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B9(v, w) = —(ar(v, w),2mH) = B(ty. tw) (7)

for all v,w ep_ and m =dim M.

Remark 1. (See [7].) Let 3(¢) be the center of a Lie algebra €. Then:
Xe3®) & 0=([X,U],V)=(X,[U,V]) forallU,V et,

hence X € [¢, £]1. Thus if we assume [¢_,¢_]=+¢,, then X € [¢,,¢_]1. Suppose that ¢ is solvable and indecomposable. Then
X € 3(8) must be lightlike, otherwise we get holonomy invariant ad(¢;)X = 0 and non-degenerate subspace R - X. For the
selfadjoint endomorphism Ric:€_ — £_, we get by (6):

—2(Ric(ty), 3(&)") = —2Ric(ty, 3®)") = B* (tv. 3®") € B*(tv. [A,tw]) =0

for all t,,t,, € t_ and A € £,. Hence Ric(t,) C G(&)1)+ =3(¥) for all t, € £_. Since 3(£) are totally isotropic and Ric: ¢_ — ¢_
is selfadjoint, we get:

0 = (Ric(ty), Ric(tw)) = (Ric*(ty), tw)

for all ty,t, €k_. Thus we obtain Ric? =0.
We denote by RZ« an n-dimensional pseudo-Euclidean space whose metric is given by:

(VW) =—=ViWy — - =V Wy +V qWyg1 4+ VpWy

witho< u<<n—1.

Lemma 1. Let M be an extrinsic symmetric space in RZ. If the mean curvature of M is zero everywhere, then the Lie algebra g of M is
solvable.

Proof. If the mean curvature H is zero, then B®(t,,ty) = —B9%(v, w) =0 for all v, w € p_ by (7). It follows from [¢_,¢_] =
€. (1) and the ad(g)-invariant Killing form that:

BY(by,by) = BO(ky, [b_,t_]) = BI([ty, e ],€_) CBO(t_,£_)=0
and B%(p4, p+) =0 since:
B9(p, [t4, p41) = BO(Ey, [p4, p4]) S BI(Ey, £4) =0,
BY([t—, p-1,p+) = BO(t—, [p—, p+]) S BO(¢_,t_) =0.
Therefore B? is solvable by the Cartan Criterion for solvability, that is, B8(X,Y) =0 for all Xegand Y €[g,g]. O

To show Lemma 2, the following bracket relations in [2] of an extrinsic symmetric space are used:

[v,wl=Itv.tw],  [v.nl=ts,v,  [n.§]lv=—[Sy, Sclv (8)

for any v,wep_ and n,& ep,.

Lemma 2. [f X +ty e g_N3(g) forty € t_ and X e p_, then Ric(X, v) =Ric(Y,v) =0, AX =AY =0and a(X,v) =a(Y,v)=0
forallAetyandvep_.

Proof. Let X +ty e g_Nj(g) for ty e t_ and X € p_. Then by the relations (3), (4), (5) and (8), we get:
[A, X]=0, [tw, X]=0(w, X) =0, [w, X]=0, [, XI=ts,x =0,
[A ty]l=ta,y =0, [tw,ty]=[w,Y] =0, [w,ty]=—a(w,Y) =0, [n,ty]=S,Y=0
for all w € p_ and 7 € p4. Equivalently we get
[A tx]=ta,x =0, [tw,tx] =[w, X]=0,
[w,tx]=—a(w, X) =0, [n,tx]=5,X=0
and
[A, Y]=0, [tw,Y]=a(w,Y) =0, [w,Y]=0, (7, Y]=ts,y =0.

The curvature tensor of a symmetric space shows Ric(X, v) =Ric(Y,v)=0. O
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Proof of the theorem. The Killing form B¢ of an extrinsic symmetric space shows that if the mean curvature of an extrinsic
symmetric space in R is zero, then g is solvable by Lemma 1. A solvable Lie algebra has the decreasing sequence called
commutator series whose end is Abelian ideal. Let us denote by 3(g) the center of a Lie algebra g. If 3(g) Np+ is not empty,
then we have S;v =0 by the bracket relation (4) for all v e p_ and 7 € 3(g) N p4.. It suffices to consider the quotient Lie
algebra g/(3(g) N p+) which we denote again by g. So the elements of the center belong to g_ by Remark 1 and Lemma 2.
For a solvable Lie algebra g, we get g =0 in the case of [g, g] =g. So M is trivially totally geodesic by (4). Thus we need to
look at the nontrivial case of [g, g] C g. First, if M is spacelike, then there is a tangent vector X € 3(g) satisfying o(X,v) =0
for all v € p_ by Lemma 2. The quotient Lie algebra g/3(g) is also solvable. By the induction arguments, we see that M
is totally geodesic. Second, in the case of timelike M with [g,g] C g, we may have a lightlike tangent vector X € 3(g)
with o (X,v) =0 for all v e p_ by Lemma 2. Otherwise M is totally geodesic by the first induction arguments. So after
factoring out (if necessary) a totally geodesic Riemannian extrinsic space by the first arguments, we get an indecomposable
Lie algebra. Thus we need to look at the case where Ric? = 0 by Remark 1. Hence we consider Ric(X, v) = 0 for a lightlike
Xep_Nj3(g) and all v e p_ by Lemma 2 and an indecomposable Lie algebra g. Given the above X, we take an orthonormal
basis {61}171:1 of p_ such that X =e; +e, and N = —%61 + %em for timelike e and spacelike ep,. Since the Ricci tensor is
two-step nilpotent with Ric(X, v) =0 for all v € p_, we can put:

RicX =0, RicN = X, Ric(v,w) =0, forallv,w € Span{X, N}L, 9)

where Span{X, N} is the orthogonal complement of Span{X, N}. Thus it follows from:

Ric(X, e1) =Ric(e; +em, e1) =Ric(eq, e1) + Ric(eq, em) =0,

Ric(X, e;;) = Ric(e1 + em, em) = Ric(eq, en) + Ric(em, em) =0
that:

Ric(e1, e1) = Ric(em, em) = — Ric(e1, em). (10)
Similarly from «(X,e1) =0 and a(X, ey;) =0, we get:

a(er,e1) =a(em, em) = —a(er, em). (11)
The Ricci equation:

Ric(v, w) =Y €&(R(v, epei, w)=(a(v,w), mH) = > eifa(v, e, a(ei, w))
shows that if H =0, then we have by (11):

—Ric(er. em) = —(a(e1. €1). ct(er. em)) + ((e1. em). ct(em. em)) + Y (ax(er. ). (e, em))

i#1,m

= ) (a(er.e). a(ei em) >0, (12)

i#1,m
since p. is positive definite. In the same way, we have:
—Ric(er, e1) = ) (a(er, e, a(ei, 1)) > 0. (13)
i#1,m
Therefore it follows from (10), (12) and (13) that:
Ric(eq, e1) = Ric(em, em) = —Ric(e1, em) =0, (14)

which leads to the flat Ricci tensor Ric = 0 together with (9).
Then by (13) and o (X, e;) =0, we get:

a(eq,e;) =0, a(em,e)) =0 (i#1,m). (15)
Again the Ricci equation and (15):
0 =Ric(e;, e;) = (x(e;, ), mH) — Zek(a(ei, ex), a(ex, e))

= —(a(ei e1), arler, e) + (arlei, em), alem. e)) + Y ((ei en), (e, e)))
k#1,m

= Z (ceei, er), (e, ep))
k#1,m
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imply:

ae,e) =0 (i, k#1,m). (16)
By the second fundamental form (11), (15), (16) and the Gauss equation, we get:

R(e1.ei e, e1) =(a(ei.e), ax(er, en)) — (a(er. e;), ceer, e;)) =0,
R(em.ei,ei,em) =0,  R(ej,ej,ej,e))=0 (i,j#1,m).

Hence M is flat with one nonzero normal vector «(e1,eq) (11).
With the same arguments in the proof of theorem, we get:

Corollary. Let M be an extrinsic symmetric space in pseudo-Euclidean space R’L. If M is spacelike with zero mean curvature, then M
is totally geodesic.
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