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For an extrinsic symmetric space M in Minkowski space-time, we prove that if M is
spacelike with zero mean curvature, then it is totally geodesic and if M is timelike with
zero mean curvature, then it is totally geodesic or it is a flat hypersurface.
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r é s u m é

Pour un espace symétrique extrinsèque M dans l’espace-temps de Minkowski, nous
prouvons que, si M est de type espace et à courbure moyenne nulle, alors M est totalement
géodésique, tandis que, si M est de type temps à courbure moyenne nulle, il s’agit alors
d’une sous-variété totalement géodésique ou d’une hypersurface.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a non-degenerate submanifold in Minkowski space-time Rn
1. It is called a spacelike, timelike submanifold if its

tangent space TxM is spacelike, timelike for each x ∈ M , respectively. The reflection for the affine isometry sx :Rn
1 → Rn

1 is
defined by:

sx(x) = x, s∗|Tx M = −id, s∗|(Tx M)⊥ = id.

We call M a symmetric submanifold or extrinsic symmetric space if it is invariant under the reflection at each affine normal
space (Tx M)⊥ , that is, sx(M) = M for all x ∈ M . The covariant derivation of the second fundamental form α and the above
reflection sx give:

(∇⊥
u α

)
(v, w) = s∗

(∇⊥
u α

)
(v, w) = (∇⊥

s∗uα
)
(s∗v, s∗w) = −(∇⊥

u α
)
(v, w)

for all x ∈ M and u, v, w ∈ TxM . Thus an extrinsic symmetric space has the parallel second fundamental form. The converse
holds due to Strübing in [8].
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In [3] Ferus showed that if an extrinsic symmetric space M in Euclidean space Rn has zero mean curvature, then M is
totally geodesic. Here we consider an extrinsic symmetric space M in Rn

1 whose mean curvature is zero. And we show the
following theorem:

Theorem. Let M be an extrinsic symmetric space in Rn
1 . If M is spacelike with zero mean curvature, then it is totally geodesic. And if

M is timelike with zero mean curvature, then it is totally geodesic or it is a flat hypersurface.

2. Proof of the theorem

The Lie algebra of an indefinite extrinsic symmetric space is constructed in [6]. We recall some necessary notations in
[6] for the proof of the theorem. Let M ⊂ V = Rn

1 be an extrinsic symmetric space and K̂ = 〈sx; x ∈ M〉 ⊂ O (V ) be the

group generated by all reflection sx . A one-parameter subgroup of the group K̂ determined by a geodesic γ , t 
−→ pt(γ ) :=
sγ (t/2) ◦ sγ (0) = sexp(v/2) ◦ sγ (0) with v = γ ′(0) is called a transvection. We denote by K the identity component of the Lie
group generated by transvections [6, Lemma 3.1] and let M = K/Kx , where Kx is the isotropy group for some fixed x ∈ M .
Let k be the Lie algebra of the group K . Then we have a Cartan decomposition k= k+ + k− with respect to the involution σ
given by the conjugation of the reflection sx , which satisfies [1,6]:

[k−, k−] = k+. (1)

The infinitesimal transvection tv ∈ k− is given by its differential dps(γ )|s=0. We identify k− with the tangent space TxM
and define a metric on k− such that 〈tv , tw 〉k− = 〈v, w〉 for any v, w ∈ TxM . The isotropy action on the tangent space is
assumed to be effective in order to get the non-degenerate metric on k− .

Put 〈k+, k−〉 = 0 and define the metric on k+ as:
〈
A, [tv , tw ]〉

k+ = 〈[A, tv ], tw
〉
k− (2)

for all A ∈ k+ and v, w ∈ TxM . This is well defined by the property of the curvature tensor R(v, w)u = −[[tv , tw ], tu] of an
intrinsically symmetric space M and the effective isotropy action. Then we get an ad(k)-invariant metric on k. Put p− = TxM
and p+ = TxM⊥ . A Lie algebra k is extended to a Lie algebra g = k + p [2] by defining a skew symmetric product [ , ] on
g= k+ p:

[A, v] = A∗v,
〈
A, [v, w]〉

k
= 〈A∗v, w〉, (3)

where ∗ denotes the linearized action of A. Note that there is another Cartan decomposition g = g+ + g− by putting
g+ = k+ + p+ and g− = k− + p− .

The following bracket relations of an extrinsic symmetric space will be used to calculate the Killing form Bg:

[tv , w] = α(v, w), [tv , η] = −Sηv, (4)

where α is the second fundamental form and S is the Shape operator [2,4,5]. And since the linear maps t : TxM → k− ,
v 
→ tv and S : (TxM)⊥ → S(TxM), η 
→ Sη are equivariant with respect to the action of k+ , we see that:

[A, tv ] = t A∗v ,
[

A∗, Sη

] = S A∗η (5)

for all A ∈ k+ [2].
The Killing form of a Lie algebra g is defined by Bg(v, w) = trace(ad(v) ◦ ad(w)) for all v, w ∈ g. Let us denote by

BU (v, w) = ∑
i εi〈ad(v)ad(w)ui, ui〉 the partial trace of a non-degenerate subspace U in g, where {ui} is an orthonormal

basis of U with 〈ui, u j〉 = εiδi j . The Killing form of a symmetric space is well known. Let k be a Lie algebra of a symmetric
space with a Cartan decomposition k = k+ + k− satisfying [k−, k−] = k+ . Since ad(tv) is skew symmetric for tv ∈ k− and
maps k− to k+ and vice versa, we have Bk− = Bk+ on k− . Hence we get

Bk(tv , tw) = 2Bk−(tv , tw).

For an orthonormal basis {tei } of k− with sign εi = 〈tei , tei 〉, the Killing form Bk on k− is calculated by:

Bk(tv , tw) = 2
∑

εi
〈
ad(tv)ad(tw)tei , tei

〉

= 2
∑

εi
〈[

tv , [tw , tei ]
]
, tei

〉 = −2
∑

εi
〈[[tw , tei ], tv

]
, tei

〉 = 2
∑

εi
〈
R(w, ei)v, ei

〉
.

So we obtain:

Bk(tv , tw) = −2 Ric(tv , tw). (6)

Let us denote by H the mean curvature of an extrinsic symmetric space M in Rn
1. The Killing form Bg of an extrinsic

symmetric space is obtained (see [6]):
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Bg(v, w) = −〈
α(v, w),2mH

〉 = Bg(tv , tw) (7)

for all v, w ∈ p− and m = dim M .

Remark 1. (See [7].) Let z(k) be the center of a Lie algebra k. Then:

X ∈ z(k) ⇔ 0 = 〈[X, U ], V
〉 = 〈

X, [U , V ]〉 for all U , V ∈ k,

hence X ∈ [k, k]⊥ . Thus if we assume [k−, k−] = k+ , then X ∈ [k+, k−]⊥ . Suppose that k is solvable and indecomposable. Then
X ∈ z(k) must be lightlike, otherwise we get holonomy invariant ad(k+)X = 0 and non-degenerate subspace R · X . For the
selfadjoint endomorphism Ric : k− → k− , we get by (6):

−2
〈
Ric(tv), z(k)⊥

〉 = −2 Ric
(
tv , z(k)⊥

) = Bk
(
tv , z(k)⊥

) ⊆ Bk
(
tv , [A, tw ]) = 0

for all tv , tw ∈ k− and A ∈ k+ . Hence Ric(tv) ⊂ (z(k)⊥)⊥ = z(k) for all tv ∈ k− . Since z(k) are totally isotropic and Ric : k− → k−
is selfadjoint, we get:

0 = 〈
Ric(tv),Ric(tw)

〉 = 〈
Ric2(tv), tw

〉

for all tv , tw ∈ k− . Thus we obtain Ric2 = 0.
We denote by Rn

μ an n-dimensional pseudo-Euclidean space whose metric is given by:

〈v, w〉 = −v1 w1 − · · · − vμwμ + vμ+1 wμ+1 + · · · + vn wn

with 0 � μ � n − 1.

Lemma 1. Let M be an extrinsic symmetric space in Rn
μ . If the mean curvature of M is zero everywhere, then the Lie algebra g of M is

solvable.

Proof. If the mean curvature H is zero, then Bg(tv , tw) = −Bg(v, w) = 0 for all v, w ∈ p− by (7). It follows from [k−, k−] =
k+ (1) and the ad(g)-invariant Killing form that:

Bg(k+, k+) = Bg
(
k+, [k−, k−]) = Bg

([k+, k−], k−
) ⊆ Bg(k−, k−) = 0

and Bg(p+,p+) = 0 since:

Bg
(
p+, [k+,p+]) = Bg

(
k+, [p+,p+]) ⊆ Bg(k+, k+) = 0,

Bg
([k−,p−],p+

) = Bg
(
k−, [p−,p+]) ⊆ Bg(k−, k−) = 0.

Therefore Bg is solvable by the Cartan Criterion for solvability, that is, Bg(X, Y ) = 0 for all X ∈ g and Y ∈ [g,g]. �
To show Lemma 2, the following bracket relations in [2] of an extrinsic symmetric space are used:

[v, w] = [tv , tw ], [v, η] = tSη v , [η, ξ ]v = −[Sη, Sξ ]v (8)

for any v, w ∈ p− and η, ξ ∈ p+ .

Lemma 2. If X + tY ∈ g− ∩ z(g) for tY ∈ k− and X ∈ p− , then Ric(X, v) = Ric(Y , v) = 0, A X = AY = 0 and α(X, v) = α(Y , v) = 0
for all A ∈ k+ and v ∈ p− .

Proof. Let X + tY ∈ g− ∩ z(g) for tY ∈ k− and X ∈ p− . Then by the relations (3), (4), (5) and (8), we get:

[A, X] = 0, [tw , X] = α(w, X) = 0, [w, X] = 0, [η, X] = tSη X = 0,

[A, tY ] = t A∗Y = 0, [tw , tY ] = [w, Y ] = 0, [w, tY ] = −α(w, Y ) = 0, [η, tY ] = SηY = 0

for all w ∈ p− and η ∈ p+ . Equivalently we get

[A, t X ] = t A∗ X = 0, [tw , t X ] = [w, X] = 0,

[w, t X ] = −α(w, X) = 0, [η, t X ] = Sη X = 0

and

[A, Y ] = 0, [tw , Y ] = α(w, Y ) = 0, [w, Y ] = 0, [η, Y ] = tSηY = 0.

The curvature tensor of a symmetric space shows Ric(X, v) = Ric(Y , v) = 0. �
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Proof of the theorem. The Killing form Bg of an extrinsic symmetric space shows that if the mean curvature of an extrinsic
symmetric space in Rn

1 is zero, then g is solvable by Lemma 1. A solvable Lie algebra has the decreasing sequence called
commutator series whose end is Abelian ideal. Let us denote by z(g) the center of a Lie algebra g. If z(g) ∩ p+ is not empty,
then we have Sηv = 0 by the bracket relation (4) for all v ∈ p− and η ∈ z(g) ∩ p+ . It suffices to consider the quotient Lie
algebra g/(z(g) ∩ p+) which we denote again by g. So the elements of the center belong to g− by Remark 1 and Lemma 2.
For a solvable Lie algebra g, we get g = 0 in the case of [g,g] = g. So M is trivially totally geodesic by (4). Thus we need to
look at the nontrivial case of [g,g]� g. First, if M is spacelike, then there is a tangent vector X ∈ z(g) satisfying α(X, v) = 0
for all v ∈ p− by Lemma 2. The quotient Lie algebra g/z(g) is also solvable. By the induction arguments, we see that M
is totally geodesic. Second, in the case of timelike M with [g,g] � g, we may have a lightlike tangent vector X ∈ z(g)

with α(X, v) = 0 for all v ∈ p− by Lemma 2. Otherwise M is totally geodesic by the first induction arguments. So after
factoring out (if necessary) a totally geodesic Riemannian extrinsic space by the first arguments, we get an indecomposable
Lie algebra. Thus we need to look at the case where Ric2 = 0 by Remark 1. Hence we consider Ric(X, v) = 0 for a lightlike
X ∈ p− ∩ z(g) and all v ∈ p− by Lemma 2 and an indecomposable Lie algebra g. Given the above X , we take an orthonormal
basis {ei}m

i=1 of p− such that X = e1 + em and N = − 1
2 e1 + 1

2 em for timelike e1 and spacelike em . Since the Ricci tensor is
two-step nilpotent with Ric(X, v) = 0 for all v ∈ p− , we can put:

Ric X = 0, Ric N = X, Ric(v, w) = 0, for all v, w ∈ Span{X, N}⊥, (9)

where Span{X, N}⊥ is the orthogonal complement of Span{X, N}. Thus it follows from:

Ric(X, e1) = Ric(e1 + em, e1) = Ric(e1, e1) + Ric(e1, em) = 0,

Ric(X, em) = Ric(e1 + em, em) = Ric(e1, em) + Ric(em, em) = 0

that:

Ric(e1, e1) = Ric(em, em) = −Ric(e1, em). (10)

Similarly from α(X, e1) = 0 and α(X, em) = 0, we get:

α(e1, e1) = α(em, em) = −α(e1, em). (11)

The Ricci equation:

Ric(v, w) =
∑

εi
〈
R(v, ei)ei, w

〉 = 〈
α(v, w),mH

〉 −
∑

εi
〈
α(v, ei),α(ei, w)

〉

shows that if H = 0, then we have by (11):

−Ric(e1, em) = −〈
α(e1, e1),α(e1, em)

〉 + 〈
α(e1, em),α(em, em)

〉 +
∑

i �=1,m

〈
α(e1, ei),α(ei, em)

〉

=
∑

i �=1,m

〈
α(e1, ei),α(ei, em)

〉
� 0, (12)

since p+ is positive definite. In the same way, we have:

−Ric(e1, e1) =
∑

i �=1,m

〈
α(e1, ei),α(ei, e1)

〉
� 0. (13)

Therefore it follows from (10), (12) and (13) that:

Ric(e1, e1) = Ric(em, em) = −Ric(e1, em) = 0, (14)

which leads to the flat Ricci tensor Ric = 0 together with (9).
Then by (13) and α(X, ei) = 0, we get:

α(e1, ei) = 0, α(em, ei) = 0 (i �= 1,m). (15)

Again the Ricci equation and (15):

0 = Ric(ei, ei) = 〈
α(ei, ei),mH

〉 −
∑

εk
〈
α(ei, ek),α(ek, ei)

〉

= −〈
α(ei, e1),α(e1, ei)

〉 + 〈
α(ei, em),α(em, ei)

〉 +
∑

k �=1,m

〈
α(ei, ek),α(ek, ei)

〉

=
∑ 〈

α(ei, ek),α(ek, ei)
〉

k �=1,m
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imply:

α(ei, ek) = 0 (i,k �= 1,m). (16)

By the second fundamental form (11), (15), (16) and the Gauss equation, we get:

R(e1, ei, ei, e1) = 〈
α(ei, ei),α(e1, e1)

〉 − 〈
α(e1, ei),α(e1, ei)

〉 = 0,

R(em, ei, ei, em) = 0, R(e j, ei, ei, e j) = 0 (i, j �= 1,m).

Hence M is flat with one nonzero normal vector α(e1, e1) (11).

With the same arguments in the proof of theorem, we get:

Corollary. Let M be an extrinsic symmetric space in pseudo-Euclidean space Rn
μ . If M is spacelike with zero mean curvature, then M

is totally geodesic.
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