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Presented by Philippe G. Ciarlet deformation @ € W3*(£2; R?) in the usual approach. The purpose of this Note is to show

that the same approach applies as well to the Dirichlet-Neumann problem. To this end, we
show how the boundary condition @ = @, on a portion Iy of the boundary of £2 can be
recast, again as boundary conditions on Ip, but this time expressed only in terms of the
new unknown € € W25(£2;S3).
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RESUME

Dans un travail antérieur, on a montré comment le champ C:=V®TV® ¢ W25(£2; S3>).
s> 3/2, des tenseurs de Cauchy-Green peut étre considéré comme la seule inconnue dans
le probléeme de Dirichlet homogéne pour I'élasticité non linéaire posé sur un domaine
£ C R3, au lieu de la déformation & € W35(£2; R3) dans I'approche habituelle. L'objet
de cette Note est de montrer que la méme approche s’applique aussi bien au probléme de
Dirichlet-Neumann. A cette fin, nous montrons comment la condition aux limites & = (o0
sur une portion Iy de la frontiére de 2 peut étre ré-écrite, a nouveau sous forme de
conditions aux limites sur I, mais exprimées cette fois uniquement en fonction de la
nouvelle inconnue C € W25(£2;S2).

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries

Greek indices, resp. Latin indices, range over the set {1, 2}, resp. {1,2,3}. The summation convention with respect to
repeated indices is used in conjunction with these rules.

The notations S3, S3>, and 03, respectively designate the space of all symmetric matrices, the set of all positive-definite
symmetric matrices, and the set of all proper orthogonal matrices, of order 3. The notation f|4 designates the restriction
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to the set A of a function f defined over a set that contains A. Given a normed vector space X, the notation Lgym(x x X)
designates the space of all continuous symmetric bilinear forms defined on the product X x X.

The Euclidean norm, the exterior product, the dyadic product, and the inner product of vectors u, v e R? are respectively
denoted |u|, uAv, u®v, and u-v. The inner product of two m x m tensors e and 7 is denoted and defined by e : T = tr(e’ 7).

The set of k-times continuously differentiable functions from an open subset U C X of a normed vector space X into
a subset V C Y of a normed vector space Y is denoted CX(U; V). The set C¥(U; V) is defined as the subset of the space
Ck(U; V) that consists of all functions f € Ck(U; V) that, together with all their partial derivatives of order <k, possess
continuous extensions to the closure U of U, the extension of f being in addition with values in V.

Throughout this Note, the notation §2 designates a bounded and connected open subset of R3, whose boundary I' :=
952 is of class C*. This means that there exists a finite number N of open sets w* c R? and of injective immersions
0% e C*(w*; R3), k=1,2,...,N, such that I" = U,I:’:1 6% (w"). Tt also implies that there exists & > 0 such that the mappings
Ok e C3(U*; R3) defined by:

O (y, y3) :=0"(y) + y3ak(y) forall (y,y3) e UX:= 0" x (—¢,¢),

where a denotes the unit inner normal vector field along the portlon 6% (w¥) of the boundary of £2, are C3-diffeomorphisms
onto thelr image (cf. [3, Theorem 4.1-1]). Thus the mappmgs {@ 1 <k < N} form an atlas of local charts for the set
Q. :={x e 2; dist(x, ") < &} C 2, while the mappings {0 <k < N} form an atlas of local charts for the surface
=002 C ]R3. When no confusion should arise, we will drop the expllc1t dependence on k for notational brevity.

Generic points in w, in U = w x (—¢,¢), and in £2, are respectively denoted y = (y4), (¥, ¥3), and x = (x;). Partial
derivatives with respect to y; are denoted 9; := d/dy;, while partial derivatives with respect to x; are denoted 9/dx;. The
gradient of a vector field @ = (&;) : 2 — R3 is the 3 x 3 matrix field denoted and defined by V& := (8@ /dx;), with i as
its row index.

The tangent plane TxI" of the surface I" C R> at the point x € I" will be identified with the subspace of R3 spanned
by the vectors ay(y) := 9,0(y), where y =0~ (y). The vectors a?(y) of the dual basis of the tangent plane are those
defined by the relations a?(y) - a, (y) = 85. The unit inner normal vector to TxI" is defined by as(y) =a3(y) := (@1(y) A
ax(y))/la1(y) Aaz(y)| (to ensure that the vector as(y) points toward the interior of £2, it suffices to exchange if necessary
the coordinates y; and y»).

The unit outer normal vector field along the boundary I" of £2 is denoted n; thus n(x) = —as(y), y = 0~1(x), in a local
chart.

The tangent space TyR> of the Euclidean space R3 at the point x € R? will be identified with R3 by means of the basis
formed by the vectors g;(y, y3) := 8;©@(y, y3), where (y, y3) = @1 (x). The vectors of the dual basis are those defined by

the relations g/(y. y3) - g(y, y3) = $;. Note that:

20V, ¥3) =0aq(y) + y30,a3(y) and gs(y,y3) =as(y).

Let Iy C I denote a relatively open subset of I'. Since I" is a manifold of class C4, so is I'y. It follows that functions, vector
fields, and tensor fields, of class C¥, 0 < k < 4, can be defined on Iy. The Lebesgue and Sobolev spaces on Iy used in this
paper are defined as in, e.g., Aubin [1].

Spaces of vector fields, resp. symmetric tensor fields, with values in R3, resp. in S, are defined by using a given Cartesian
basis {€', 1 <i <3} in R3, resp. the basis { e'oe+ee e) 1<1i,j <3} in S3. They will be denoted by bold letters and
by capital Roman letters, respectively.

Given an orientation-preserving immersion @ : £2 — R? of class C', that is, a mapping @ € C'(2) :=C! (§ R3) such that
det(V®(x)) > 0 for all x € 2, the Cauchy-Green, or metric, tensor field induced by @ is the field € := V& V& € C0(£2; S3
Each Cauchy-Green tensor field C € C%(£2; S?) defines a Riemannian metric on £2 by means of the bilinear forms:

(C®)m,v):=u"Cxv forall (u,v)eR>xR> xe 2.

Complete proofs and complements will be found in [6].
2. Fundamental forms of the surface Iy

Given an orientation-preserving immersion @ € C2(£2), the restriction ¢ := Pl € C?(Tp) is an immersion of I'g into
R3. The first and second fundamental forms induced by ¢ are then respectively defined in each local chart by:
a(@)of =agp(9)a® ®a’, where aqps(@) = ay(p) - ag(),
b(@) 00 =bas(@)a® @ a’, where byg(@) = dap(@) - a3(9) = —au (@) - pas(), (1)
the vector fields a;(¢) and a/ (@) being defined by:

a1 (@) ANax(Q) ; '
(@) 1= 3y (@ 0 0), = AT and ai(e)-ai(@) =5
ay (@) (pob) as (@) @1(@) A ()] and a;i(¢) -a'(¢) =J;
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Given any metric tensor field C € C1(£2;S3), let:

CIN

NAO = NTeing

eC(2) and ny(C):=N;|p, € CY(T),

where N € C3(£2) denotes any C3-extension to £2 of the unit outer normal vector field n € C3(I") to the boundary of £2
defined in Section 1. Then n; :=mny(C) is a unit outer normal vector field to I'y with respect to the metric C, that is:

n,x)'Ct=0 forallte Tyly, m()'CxM(x)=1, and n;(x)"C(X)n(x) > 0.

Note that the fields N (C) and n;(C) will be simply abbreviated to N and n;, respectively, when no confusion should arise.
The first and second fundamental forms of the surface I'y induced by C are then the tensor fields:

a*(€):x e Iy — (3*(0)) (X) € L (TxTb x TxI),

b*(C) :x € Iy — (B*(€)) (%) € L (TxT x TxIh).
defined in a local chart by:

a*(C) o0 =d,(C)a* ®a’, whered,,(C) = Caplux(o).

1 . ) .

b*(C)o = bgﬁ(C)a“ ®a®, where bfw(C) = 5(Cm-a,gN;j + Cpida N} + N30 Cap) ywx{o}, (2)
where the functions C;; and Né are defined by the relations:

Co@:C,-jgi®gj and NﬁO@ZNégi inw x [0, &).

Note that the definition of the second fundamental form b"(C) is independent of the choice (induced by the choice of
an extension to £2 of the unit outer normal vector field along the boundary of §2) of the extension N of n; to £2.

Remark. In other words, the fundamental forms a”(C) and b?(C) are the restrictions of the metric tensor C and of its Lie
derivative (cf., e.g., [2]) along the vector field N to the subset TxIp x TxIp of TyR3 x T,R3, that is,

1
(@*(0))®) = C®)|ryrpxTrp, and (bﬁ(c))(x):E(ENjC)(X)|TXngTXF0a xelp. O

The following theorem establishes the relation between the tensors fields defined by (1) and (2) when the vector field ¢
and the tensor field C are induced by the same orientation-preserving immersion @ : 2 — R3.

Theorem 1. Given any orientation-preserving immersion @ € C2(2),let C := V@ V® € C1(2;S2) and ¢ := @ |, € C>(Ip). Then
a*(C)=a(p) inC'(Iy) and b*(C)=h(p) inCo(Ip).
Sketch of proof. Proving the theorem amounts to proving the equalities:

a5 (C) =aap(@) and b,(C)=bey(9) ino,

in any local chart. The first equality follows from direct computations. The second equality follows from the observation
that the relation € = V&'V implies that the vector field g3 € C'(£2) defined by the relations g3(x) - 9;(® o ©)(x) at each
x € 2 satisfies g3|r = N¢|r. O

3. An intrinsic formulation of the boundary conditions

As a consequence of Theorem 1, we now show how a Dirichlet boundary condition imposed on the orientation-preserving
immersion @ in the displacement-traction problem of nonlinear elasticity can be replaced by a boundary condition imposed on the
Cauchy-Green tensor field C. The set of proper isometries of R> appearing in the next theorem is defined by:

Rig, (R*) :={x : R’ —> R®; there existc € R* and Q € O3 such that x(x) =¢ + Qx, x e R?}.
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Theorem 2. Let there be given an orientation-preserving immersion ®¢ € C%(£2) and let @Yo =Polp € C%(Iy). If an orientation-
preserving immersion @ € C2(82) satisfies the boundary condition:

@, =Polr, inC*(1),
then the associated Cauchy-Green tensor field C = V@TV® € C1($2; S3>) satisfies the boundary conditions:
a*(C)=a(py) inCl(Ip) and b*(C)=hb(p,) inCo(Ip).

Assume in addition that Iy is connected. If the Cauchy-Green tensor field C = Vo've e C1(2; S3>) associated with an
orientation-preserving immersion ® € C>(82) satisfies the boundary conditions:

a*(C)=a(g,) inCl(Ip) and b (C)=b(p,) inC’(Ip), (3)

then there exists a unique proper isometry x € Rig, (R3) such that the immersion (x o ®) € C2(§2) satisfies the boundary condition:
(X o ®)lry =Polr, inC*(Iv). (4)

Sketch of proof. Let C = Vo V@ € C'(2:52) and ¢ := ®|p;, € C*(I7) be defined by a same orientation-preserving im-
mersion @ € C%(£2). Then Theorem 1 shows that:

a*(C)=a(p) inC'(Jp) and b*(C)=b(p) inC°(Ip).

The conclusion follows by combining these relations with the classical rigidity lemma on a surface (see, e.g., [3] or [4]),
which reads as follows: If two immersions ¢ € C%(Iy) and @o € C2(Ip) satisfy a(p) = a(@) and b(p) =b(@,) on Iy, and if Iy
is connected, then there exists a proper isometry x € Rig, (R3) such that@ = x 0o @y. O

Remark. The assumption that I is connected is essential, as illustrated by the following counterexample: assume that I =
Io1U oo with To1 N2 =7 Let ®g=id and C=VPTV® cC'(2;S?), where & € C2(£2) is an orientation-preserving
immersion such that @ = x; in a neighborhood of I 1, and @ = x, in a neighborhood of Iy, where x; # x, are two
proper isometries of R3. Then the boundary condition (3) is clearly satisfied, while (4) is not. O

4. Extension to Sobolev spaces

The results of Sections 2 and 3 can be extended to orientation-preserving immersions and Cauchy-Green tensor fields
with components in Sobolev spaces with sufficient regularity, so as to ensure that the fundamental forms induced by the
immersion ¢ and by the metric tensor field C are well defined and that the rigidity theorem on a surface (see the proof of
Theorem 2) still holds.

In all that follows, the real numbers s > 3/2 and p > 2 are such that the trace operator from W15(£2) into LP(Ip) is
well defined. Since in this case the space W25(£2) is also an algebra, the following implication holds:

®cW(2) and detVe >0 in2 = C:=V®'VeeW?5(2,5?) and ¢:=|yec WP (Ip).
The definition of the tensor fields a(¢) and b(¢) can then be extended to fields ¢ € W2P(Ip), in which case:

a(@) eW'"P(Iy) and b(@) e LP(I7).

To see this, note that W2P(Iy) c C'(I"g) by the Sobolev embedding theorem; hence the vector field a3 (@) appearing in
the definition of b(¢) (see Section 2) is well defined and belongs to the space WP (Ip).

The definitions of the tensor fields a*(C) and b*(C) can also be extended to matrix fields C € Wz’S(IZ,Si), in which
case:

a(C) e WLP(Ip) and BP(C) e LP(Iy).

To see this, note that W“(.Q,Si) c C%2; S3>) by the Sobolev embedding theorem; hence the vector field N; = N:(C)
appearing in the definition of b?(C) (see Section 2) is well defined and belongs to the space W25(£2).
The above observations allow us to generalize Theorems 1 and 2 as follows.

Theorem 3. Given any orientation-preserving immersion ® € W35($2), let C := V&'V® € W25(2;S3) and ¢ := ®|, €
W2P (). Then:

a*(C)=a(p) inW'P(Ip) and b*(C)=h(p) inLP(Ip).

Proof. The proof follows from Theorem 1 combined with the density of the space C3(£2) in W35(2). O
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Theorem 4. Let there be given an orientation-preserving immersion &g € W>5(82) and let @ = Polny € W2P(Ip). If an
orientation-preserving immersion @ € W35(82) satisfies the boundary condition:

®|r, =Polp, in WHP(Ip),

then the associated Cauchy-Green tensor field C = V®TV® ¢ W25(£2; S3>) satisfies the boundary conditions:

a*(0)=a(py) inW'P(Ip) and b*(C)=b(@y) inlLP(I}p).
Assume in addition that I is connected. If the Cauchy-Green tensor field C = V®TV® ¢ W25(2;S?) associated with an
orientation-preserving immersion ® € W35(£2) satisfies the boundary conditions:
a*(0)=a(py,) inW'"P(Ip) and b*(C)=b(py) inlP(Iy),
then there exists a unique proper isometry X € Rig, (R3) such that the immersion (x o ®) € W>3(£2) satisfies the boundary condi-

tion:

(X o®)lr, = Polr, in WAP(Ip).

Sketch of proof. Let C =V® Ve € W5(2;S3) and ¢ := ®|r, € W2P(I}) be defined by a same orientation-preserving
immersion @ € W>5(£2). Then Theorem 3 shows that:

a*(C)=a(p) inW"P(Ip) and b*(C)=b(p) inLP(Iyp).

The conclusion follows by combining these relations with the following version of the rigidity lemma on a surface, due
to [7]: If two immersions ¢ € WP (Ip) and ¢, € WP (Ip) satisfy a(@) = a(@,) in WP (£2) and b(@) = b(@,) in ILP (I'p), and if
Iy is connected, then there exists a proper isometry X < Rig, (R3) such that @ = x o @ in W2P(Ip). O

Remark. In the above, we have only considered Sobolev spaces W*$(£2) for some integer k. However, all results of this
1
section hold as well for orientation-preserving immersions @ € W2+F’p(.{2) for any p > 2, since then:

1
C:=ve'veew'»P(2,s3) and @:=®|r, e WP (Ip),

which in turn implies that:

a(@),a*(C) e WP (Ip) and b(g),b*(C) eLP(Ip). O

We refer to the extended article [6] for applications to nonlinear elasticity of the results presented in this Note. There,
it will be shown in particular how the Dirichlet-Neumann boundary value problem of three-dimensional nonlinear elasticity can
be completely recast as a boundary value problem with the tensor field C = V@®TV & as the sole unknown. Such a result thus
complements the approach of [5], which was restricted to the homogeneous pure Dirichlet problem of three-dimensional
nonlinear elasticity.
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