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¢ - properly tune these methods, the variance of the noise is often used. In this paper, we
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propose a new approach to the joint estimation of the sparse vector and the noise variance
Presented by the Editorial Board in a high dimensional linear regression. The method is closely related to the maximum a
posteriori estimation and has the attractive feature of being computable by solving a simple
second-order cone program (SOCP). We establish nonasymptotic sharp risk bounds for the
proposed estimator and show how it can be applied in the problem of robust estimation.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

La calibration des méthodes d’estimation parcimonieuses, telles que le Lasso et le sélecteur
de Dantzig, nécessite souvent la connaissance a priori de la variance des erreurs. Nous
proposons une méthode qui permet de s’affranchir de cette hypothése, en estimant le
vecteur de régression et la variance des erreurs de facon conjointe. L'estimateur qui en
découle est calculable de maniére efficace en résolvant un programme conique du second
ordre. De plus, nous fournissons des garanties de risque pour cet estimateur presque aussi
fortes que celles de I'estimateur utilisant la connaissance de la variance des erreurs.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider the classical problem of Gaussian linear regression:

Y=XB"+0%E, &~Na(0,In), (1)

where Y € R" and X € R™*P are observed, in the neoclassical setting of very large dimensional unknown vector g*. Even
if the ambient dimensionality p of B* is larger than n, it has proven possible to consistently estimate this vector under
the sparsity assumption. The latter states that the number of nonzero elements of B*, denoted by s and called intrinsic
dimension, is small compared to the sample size n. Most famous methods of estimating sparse vectors, Lasso and Dantzig
Selector (DS), rely on convex relaxation of £p-norm penalty leading to a convex program that involves the ¢;-norm of B.
More precisely, for a given A > 0, Lasso and DS [10,2,3,1] are defined as
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. (1 , -
.3—afglglglerIlj{EHY—Xﬂ||2+)»||/3||1} (Lasso)
B=argmin|B; subjectto X (Y —XB)|_ <4 (DS)

The performance of these algorithms depends heavily on the choice of the tuning parameter X. Several empirical and
theoretical studies emphasized that A should be chosen proportionally to the noise standard deviation o. Unfortunately,
in most applications, the latter is unavailable. It is therefore vital to design statistical procedures that estimate 8 and o in
a joint fashion. This topic received special attention in last years, cf. [7] and the references therein. Most popular o -adaptive
procedures, the square-root Lasso (a.k.a. scaled Lasso), the ¢1 penalized log-likelihood minimization and the STIV [6], can be
seen as maximum a posteriori (MAP) estimators with some particular choice of prior distribution. The aim of the present
work is to present an alternative to these methods, which is closely related to the MAP, but presents some advantages
in terms of implementation and more transparent theoretical analysis.

2. Definition of the procedure and finite sample risk bound

Let A > 0 and p € R be tuning parameters. We define (ﬁ, 0) as a solution of the optimization problem

X" X —Y)], <20

minimize ||B]|1 subject to (MAP-DS)

2
VY TXB)2 +dnu ¥ 202 <2)Y 13— Y TXB.

As we demonstrate later, for a fixed and small tolerance level § > 0, the choice A =2,/nlog(p/8) and w =1 leads to an
estimator that enjoys strong statistical properties. More precisely, as stated in the following theorem, g satisfies an oracle
inequality with a rate optimal remainder term, provided that the Gram matrix X'X satisfies restricted eigenvalue (RE)
condition.

Theorem 2.1. Let us choose a significance level § € (0, 1) and set > = 2,/nlog(p/8). Assume that B* has at most s nonzero entries,
and satisfies

18*Il1 n i 1
o <y 2log(1/3) (l_zV" log(l/‘s)_i“) (2)

If X satisfies the condition RE(s, 1) (cf. [1], page 6) with some « > 0, then, with probability at least 1 — 36, it holds

- 4 . [2log(p/s - 45\’
871, < (4005 ZEPD x@- ) <( T ) stoswrs) 3)

If, in addition, X satisfies the condition RE(s, s, 1) (cf. [1], page 7) with k > 0, then

~\ 2
P 2 o*4+0\ " slog(p/s)
IB-81; < 32( ) ~ @
K n
Moreover, with probability at least 1 — 48, & < o* =123 + \/2n—11og(1/8)) and therefore
’ 2 2 (143w~ V2 + /2(un)Tlog(1/8) \
(@ -8 <50 : S1og(p/). ®)

Remark 1. Bound (5) is a direct consequence of the second inequality in (3) and the bound on G. In a similar manner,
one can combine the first inequality in (3) with the bound on & to get an upper bound on |8 — 8*||; independent of the
estimator . Furthermore, (5) suggests that large values of p will lead to a smaller prediction loss. However, admissible

values of p are constrained by condition (2). A simple choice for this parameter is to take p =1, which implies that

bound (5) holds true as soon as the signal-to-noise ratio ||8*|1/o* is smaller than (1 — 0 (n~1/2)) m.

An important advantage of the estimator defined by (MAP-DS) is that it can be efficiently computed by solving a second-
order cone program (SOCP). In fact, if we introduce slack variables u € RP and v € R?, then (MAP-DS) is equivalent to
minimizing Zf;] u; under the constraints

Bil<uj  |X[(Y=XB)|<ro:  [vI2<2YI3-YTXB, Y XB=vii  Anu|Y[0o =v,.

Denoting by @ the vector of unknowns (u, v, 8, o), all the aforementioned constraints can be written as ||A0 +b| < c'6+d,
which is the generic form of the constraints characterizing a SOCP. SOCPs can be solved with great efficiency by standard
toolboxes such as SeDuMi or TFOCS.
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It should also be noted that (MAP-DS) and the choice of parameters are tailored to the case of normalized regressors,
i.e., when the diagonal elements of %XTX are all equal to one. If this is not the case, one can either proceed by normalizing
the regressors (dividing each column of X by its Euclidean norm) or modify the optimization problem as follows:

p X[ XB—Y)|<AlXjll2o, Vjefl,....p)
minimize Z IBjXll2 subjectto - » X .
j=1 \/(y Xﬂ) +4anpllY 502 <2|Y]5 — Y ' XB.

This form of the optimization problem is better suited for extensions developed in next sections.

(MAP-DS’)

3. Relation with MAP

Let us describe now the connections of the proposed estimator to the general MAP methodology taking its roots in
Bayesian statistics. First remark that Lasso is a MAP estimator with Gaussian negative log-likelihood

n 1
£(Y1B,0) =2 log (2r0?) + 553 lY —XB|2

and the Laplace prior on 8 given by 7 (8) = (0.50 ~21)? exp(—x||B]l1/0%). Choosing X proportional to o, as suggested by
both theory and practice, we come up with the following log-density of the posterior probability (in the case of known o ):

—logm (BY, o)— tp

logo® + —IIY XBII5 + —||ﬁ||1.
When o is unknown, it is natural to introduce a prior on ¢ and to compute the corresponding posterior. Our proposal
here consists in taking the prior defined by the density (w.r.t. Lebesgue measure): 77(0) = 0“1, 4+00)(0). When o = p, the
resulting MAP estimator coincides with the one proposed by Stddler et al. [9]. Another interesting particular case is o = —2,
which leads to a noninformative prior Kyung et al. [8]. The former strongly penalizes large values of o, therefore it is likely
that the latter outperforms the former in the examples where the true o is not too small. Thus, using the prior 77, we get
the following log-density for the posterior probability:

—togm (801 =2 " logo? 4 1y —XBI3+ LBl

o o

The right-hand side is a convex function of the parameters (¢, p) = (8/0,1/0) and the KKT conditions take the form
(cf. [9, Prop. 1]):

X[ (XB—Y)=—oarsign(B)). ifB;#0,
|x]T(x13 —Y)|<-ox, ifBj=0

and \/YTXﬂ +4(n+p+a)|Y[302=2|Y|3 — Y "XB. One easily checks that the constraints involved in (MAP-DS) are the

convex relaxation of these KKT conditions. Therefore, to some extent, our proposal is to minimize the £; norm under some
constraints that are close to the KKT conditions for the MAP estimator.

4. Extension to fused sparsity and application to robust estimation

In some application, the sparsity condition is more likely to be fulfilled for a linear transformation of g rather than for g
itself. We call such a situation “fused sparsity scenario”. It means that for a given g x p matrix M, the vector MB* is sparse.
We will only consider the case rank(M) = q < p, which is more relevant for the applications we have in mind (image
denoising, robust estimation, etc.). Under this condition, one can find a (p —¢q) x p matrix M’ such that the augmented
matrix M = |MTM/T]T is of full rank. Let us denote by m; the jth column of the matrix M~'. Using this notation, we
define the estimator (ﬂ, 0) as a solution of the following optimization problem:

Im[ X" (XB —Y)| <20 |Xmjl2, Viefl,....q}

q
minimize Z | Xmjll2|(MB);| subjectto { M; IX"XB-Y)=0, Vjelg+1,....p}
=1

2
\/(YTXﬂ) +anp||Y 302 <2|YI5 - Y XB.

The recommended values for parameters (A, () in this problem are A =2,/logq and u =1.

This methodology can be applied in the context of robust estimation, i.e., when the relation Y; = (A8*); + & holds only
for some indices i, called inliers. Following an idea by [4,5], we introduce a new vector @* € R" that serves to characterize
the outliers. If an entry ] of @* is nonzero, then the corresponding observation Y; is an outlier. This leads to the model
Y =XB*+o0*&, where X=[I, A] and B* = [@*6*]. The sparsity assumption, in this context, tells us that @* = [I, 05,18 i
sparse, i.e., the number of outliers is significantly smaller than the sample size. We are thus in the setting of fused spar51ty
with M= [I Opxp] and M = [0y, Ip].
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5. Conclusion

We have introduced a new procedure, which allows us to jointly estimate the regression vector and the noise level
in a high dimensional linear regression under the sparsity scenario. We have shown that when the ¢;-norm of the true
regression vector is not too large, then our procedure is as accurate as those exploiting the knowledge of the true noise
level. Using more involved arguments, this analysis can be extended to the case of arbitrary regression vector and not
necessarily Gaussian noise distributions. This is an ongoing work, which also includes an intensive empirical evaluation of
the procedure and its application to aforementioned tasks of computer vision.
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