ELSEVIER

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Combinatoire

Les graphes (-2)-monohémimorphes

(-2)-monohemimorphic graphs

Badr Boushabi, Abderrahim Boussaïri

Faculté des sciences Aïn-Chock, département de mathématiques et informatique, Km 8 route d'El Jadida, BP 5366 Maarif, Casablanca, Maroc

INFO ARTICLE

Historique de l'article : Reçu le 8 mai 2012 Accepté après révision le 14 septembre 2012 Disponible sur Internet le 2 octobre 2012

Présenté par le Comité de rédaction

RÉSUMÉ

Nous considérons des graphes finis, simples et non orientés. Le *complément* d'un graphe G est le graphe \overline{G} dont les sommets sont ceux de G et tel que deux sommets sont adjacents dans \overline{G} lorsqu'ils ne le sont pas dans G. Un graphe est dit *auto-complémentaire* s'il est isomorphe à son complément. Deux graphes G et G sont hémimorphes si G est isomorphe à G ou à G ou a sommets est G est isomorphe iduits à G ou sommets sont hémimorphes. Nous montrons que les seuls graphes G complémentaires d'au moins G sommets sont les graphes complets, vides et les graphes arête-transitifs et auto-complémentaires.

© 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

ABSTRACT

We consider only finite, simple and undirected graphs. The *complement* of a graph G is the graph \overline{G} having the same vertices as G and such that two vertices are adjacent in \overline{G} when they are not in G. A graph is *self-complementary* if it is isomorphic to its complement. Two graphs G and G are hemimorphic if G is isomorphic to G or G

© 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Abridged English version

The notion of monomorphy was introduced by R. Fraïssé [4] for relations. In the case of tournaments, the most important problem is the characterization of (-k)-monomorphic tournaments. A tournament T on n vertices is (-k)-monomorphic if all its induced subtournaments on n-k vertices are isomorphic. For example, a total order is always (-k)-monomorphic. The problem of the characterization of (-1)-monomorphic tournaments proposed by A. Kotzig (see [3], problem 43, p. 252) is still open. For k=2, it is easy to see that a tournament whose automorphism group acts transitively on the set of its arcs is (-2)-monomorphic. Such tournaments are called arc-transitive and were characterized by W. Kantor [7] and by J.L. Berggren [1]. Moreover, M. Jean [6] proved that a (-2)-monomorphic tournament is a total order or an arc-transitive tournament. A simple proof of this result was found later by M. Pouzet [9] using some elementary combinatorial techniques. Later, Y. Boudabbous [2] proposed a weak notion of monomorphy using the notion of hemimorphy instead of isomorphy. Let T be a tournament, the converse of T is the tournament T^* obtained from T by reversing all its arcs. Two tournaments

T and T' are hemimorphic if T is isomorphic to T' or T'^* . A tournament on n vertices is (-k)-monohemimorphic if all its induced subtournaments on n-k vertices are hemimorphic. Y. Boudabbous [2] proved that a (-2)-monohemimorphic tournament is necessarily (-2)-monomorphic. In this Note, we study a similar problem for finite simple and undirected graphs. A graph is an ordered pair G = (V, E) where V is a set and E is a subset of the set $\binom{V}{2}$ of two-element subsets of V; elements of V and E are the vertices and edges of G; given G the sets V and E are denoted by V(G) and E(G). For example, for a set V, V, V is the complete graph on V, whereas V is the empty graph.

Let G be a graph. Two vertices X and Y of G are adjacent if $\{X, Y\} \in E(G)$. The complement of G is the graph \overline{G} such that $V(\overline{G}) = V(G)$ and $E(\overline{G}) = \binom{V(G)}{2} \setminus E(G)$. For a subset X of V(G), we denote by $G[X] = (X, \binom{X}{2}) \cap E(G)$) the subgraph of G induced by X and by G - X the subgraph of G induced by X.

Given two graphs G and H, a bijection f from V(G) onto V(H) is an isomorphism from G onto H provided that for any $x, y \in V(G)$, $\{x, y\} \in E(G)$ if and only if $\{f(x), f(y)\} \in E(H)$. Two graphs are then isomorphic if there exists an isomorphism from one onto the other. A graph is self-complementary if it is isomorphic to its complement. An automorphism of a graph G is an isomorphism from G into itself. The set of automorphisms of a graph G is a group, called the automorphism group of G and denoted by Aut(G). If the group Aut(G) acts transitively on V(G) (resp. on E(G)), then G is called a vertex-transitive (resp. edge-transitive) graph. A graph which is both vertex-transitive and edge-transitive is called a symmetric graph.

A graph G on n vertices is (-k)-monomorphic if all its induced subgraphs with n-k vertices are isomorphic. It is well known that a graph with at least two vertices is (-1)-monomorphic if and only if it is vertex-transitive, and easy to show that a (-2)-monomorphic graph with at least 4 vertices is a complete graph or an empty graph.

Let G and H be two graphs. An *hemimorphism* from G onto H is an isomorphism from G onto H or onto \overline{H} . A graph G on n vertices is (-k)-monohemimorphic if all its induced subgraphs with n-k vertices are hemimorphic. Clearly, the complete graphs or the empty graphs are (-2)-monohemimorphic Moreover, it is easy to see that a self-complementary edge-transitive graph is (-2)-monohemimorphic. In this Note, we establish the following:

Theorem 1. A graph with at least 5 vertices is (-2)-monohemimorphic if and only if it is a complete graph, an empty graph or it is a self-complementary and edge-transitive graph.

It is not difficult to prove that a graph which is self-complementary and edge-transitive is also vertex-transitive and then a symmetric graph. W. Peisert [8] gives a full description of self-complementary symmetric graphs and their automorphism groups. In particular, he proved that apart the well-known Paley graphs, there is another infinite family of self-complementary symmetric graphs and, in addition, one more graph not belonging to any of these families.

1. Introduction

Un graphe (simple, non orienté) G est un couple (V,E) où V est un ensemble et E est une partie de l'ensemble $\binom{V}{2}$ des paires d'éléments de V; les éléments de V et E sont les sommets et les arêtes de G; pour un graphe G, les ensembles V et E sont notés sont notés notés

Soient G et H deux graphes. Une $bijection\ f$ de V(G) sur V(H) est un isomorphisme de G sur H si pour tous $x,y\in V(G)$, $\{x,y\}\in E(G)$ si et seulement si $\{f(x),f(y)\}\in E(G)$. Un anti-isomorphisme de G sur G est un isomorphisme de G sur G est un isomorphisme (resp. un anti-isomorphisme) de l'un sur l'autre. Un G sur G est un hémimorphisme de G sur G est un isomorphisme de G sur G in G sur lui même. Les automorphismes d'un graphe G forment un groupe noté G sur G in graphe G est un isomorphisme sur G (resp. sur G in est isomorphe à son complément. Par exemple, le graphe G tel que G est G

Un graphe G est (-k)-monomorphe (resp. (-k)-monohémimorphe) si les sous-graphes de G induits par les parties de V(G) à n-k éléments sont tous isomorphes (resp. hémimorphes). Il est bien connu qu'un graphe à au moins 2 sommets est (-1)-monomorphe si et seulement si il est sommet-transitif et on peut vérifier aisement qu'un graphe (-2)-monomorphe G avec $|V(G)| \ge 4$ est complet ou vide. Par ailleurs, il est facile de voir qu'un graphe arête-transitif et auto-complémentaire est (-2)-monohémimorphe. Dans cette Note, nous établissons le théorème suivant :

Théorème 1. Un graphe ayant au moins 5 sommets est (-2)-monohémimorphe si et seulement si il est complet, vide ou un graphe auto-complémentaire et arête-transitif.

2. Propriétés des graphes (-2)-monohémimorphes

Soit G un graphe et $k \ge 1$. Notons $\Delta^{(k)}(G)$ le nombre de parties homogènes de G à k éléments. Pour tous sommets x_1, x_2, \ldots, x_r de G, notons par $\Delta_{x_1, \ldots, x_r}^{(k)}(G)$ le nombre de parties homogènes de G à k éléments contenant x_1, x_2, \ldots, x_r .

Dans le cas où G est un graphe (-2)-monohémimorphe à n sommets, le nombre des parties homogènes de G à kéléments contenues dans une partie quelconque X de V(G) à n-2 éléments est indépendant de X. Ce nombre sera noté $\Delta_{-2}^{(k)}(G)$.

En adaptant la technique utilisée en [9], on obtient le résultat suivant :

Lemme 2. Soit *G* un graphe (-2)-monohémimorphe à n sommets avec $n \ge 5$.

- (i) Pour $x \in V(G)$, on a $\Delta_x^{(3)}(G) = \frac{3(n-1)}{(n-3)(n-4)} \Delta_{-2}^{(3)}(G)$; (ii) Pour $x \neq y \in V(G)$, on a $\Delta_{xy}^{(3)}(G) = \frac{6}{(n-3)(n-4)} \Delta_{-2}^{(3)}(G)$.

Démonstration. Soit $x \in V(G)$. On a $\Delta^{(3)}(G - x) = \frac{1}{(n-4)} \sum_{z \neq x} \Delta^{(3)}(G - \{x, z\}) = \frac{(n-1)}{(n-4)} \Delta^{(3)}_{-2}(G)$. Il s'ensuit que $\Delta^{(3)}(G) = \frac{1}{n-3} \sum_{x \in V(G)} \Delta^{(3)}(G - x) = \frac{n(n-1)}{(n-3)(n-4)} \Delta^{(3)}_{-2}(G)$ et par suite $\Delta^{(3)}_{x}(G) = \Delta^{(3)}(G) - \Delta^{(3)}(G - x) = \frac{3(n-1)}{(n-3)(n-4)} \Delta^{(3)}_{-2}(G)$. Soient $x \neq y \in V(G)$. On a $\Delta^{(3)}_{x}(G - y) = \Delta^{(3)}(G - y) - \Delta^{(3)}(G - y) - \Delta^{(3)}(G - \{x, y\})$. Donc $\Delta^{(3)}_{xy}(G) = \Delta^{(3)}(G) - \Delta^{(3)}_{xy}(G - y) - \Delta^{(3)}_{y}(G - x) - \Delta^{(3)}(G - x) - \Delta$

Dans toute la suite, nous utilisons les notations suivantes. Si G est un graphe (-2)-monohémimorphe à au moins 5 sommets, on note $\Delta_1^{(3)}(G)$ le nombre de parties homogènes de G à 3 éléments contenant un élément arbitraire de V(G), et $\Delta_2^{(3)}(G)$ le nombre de parties homogènes de G à 3 éléments contenant deux éléments distincts et arbitraires de V(G). Par ailleurs, pour $x \neq y \in V(G)$, on pose $A_{xy} = N_G(x) \cap N_G(y)$, $B_{xy} = N_G(x) \cap N_{\overline{G}}(y)$, $C_{xy} = N_{\overline{G}}(x) \cap N_G(y)$, $D_{xy} = N_{\overline{G}}(x) \cap N_{\overline{G}}(y)$.

Lemme 3. Soit G un graphe (-2)-monohémimorphe à au moins 5 sommets, x, y, z, t des sommets de G et f un hémimorphisme de $G - \{x, y\}$ sur $G - \{z, t\}$. Alors $\Delta_{uxy}^{(3)}(G) = \Delta_{f(u)zt}^{(3)}(G)$ pour tout sommet u distinct de x et de y. Il s'ensuit que

- (i) $Si\{x, y\}, \{z, t\} \in E(G) \text{ alors } f(A_{xy}) = A_{zt}.$
- (ii) Si $\{x, y\}, \{z, t\} \notin E(G)$ alors $f(D_{xy}) = D_{zt}$.
- (iii) $Si\{x, y\} \in E(G)$ et $\{z, t\} \notin E(G)$ alors $f(A_{xy}) = D_{zt}$.
- (iv) Si $\{x, y\} \notin E(G)$ et $\{z, t\} \in E(G)$ alors $f(D_{xy}) = A_{zt}$.

Démonstration. Pour $u \in V(G) - \{x, y\}$, on a $\Delta_{uxy}^{(3)}(G) = \Delta_{u}^{(3)}(G - \{x, y\}) + \Delta_{ux}^{(3)}(G) + \Delta_{uy}^{(3)}(G) - \Delta_{u}^{(3)}(G) = \Delta_{u}^{(3)}(G - \{x, y\}) + \Delta_{uxy}^{(3)}(G) - \Delta_{uy}^{(3)}(G) -$

Remarque 1. Soit G un graphe à 5 sommets. Si $\Delta^{(3)}(G) = 0$ alors G est isomorphe au cycle C_5 . Si $\Delta^{(3)}(G) \geqslant 1$ et si G est (-2)-monohémimorphe alors toute partie de V(G) à 3 éléments est une partie homogène de G et par suite G est le graphe complet ou le graphe vide.

Lemme 4. Soit G un graphe (-2)-monohémimorphe à n sommets avec $n \ge 5$. Pour tous sommets $x \ne y$, $z \ne t$, les graphes $G - \{x, y\}$ et $G - \{z, t\}$ sont isomorphes si et seulement si $\{x, y\}, \{z, t\} \in E(G)$ ou si $\{x, y\}, \{z, t\} \notin E(G)$.

Démonstration. Il suffit de prouver que $G - \{x, y\}$ et $G - \{z, t\}$ sont isomorphes si $\{x, y\}, \{z, t\} \in E(G)$ ou si $\{x, y\}, \{z, t\}$. En effet, si la réciproque est fausse, c'est-à-dire s'il existe des sommets $x_0 \neq y_0$, $z_0 \neq t_0$ avec $G - \{x_0, y_0\}$ et $G - \{z_0, t_0\}$ isomorphes, mais par exemple, $\{x_0, y_0\} \in E(G)$ et $\{z_0, t_0\} \notin E(G)$. Le graphe G serait alors (-2)-monomorphe G et par suite c'est le graphe complet ou le graphe vide, contradiction.

Par ailleurs, quitte à remplacer G par \overline{G} , il suffit de prouver le résultat lorsque $\{x, y\}, \{z, t\} \in E(G)$. Pour cela, supposons par l'absurde qu'il existe un anti-isomorphisme f de $G - \{x, y\}$ sur $G - \{z, t\}$. Nous allons obtenir une contradiction en distinguant deux cas.

Cas 1. $\Delta_2^{(3)}(G) \geqslant 2$. Dans ce cas, on a $|A_{xy}| \geqslant 2$. Soit alors $a \neq a' \in A_{xy}$. D'après le lemme 3, on a $f(a), f(a') \in A_{zt}$. Si $\{a,a'\} \in E(G) \text{ alors } \Delta_{aa'}^{(3)}(G - \{x,y\}) = \Delta_2^{(3)}(G) - 2.$ De plus, $\{f(a),f(a')\} \notin E(G) \text{ car } f \text{ est un anti-isomorphisme de } G - \{x,y\} \text{ sur } G - \{z,t\}, \text{ donc } \Delta_{f(a)f(a')}^{(3)}(G - \{z,t\}) = \Delta_2^{(3)}(G).$ Il s'ensuit que $\Delta_{aa'}^{(3)}(G - \{x,y\}) \neq \Delta_{f(a)f(a')}^{(3)}(G - \{z,t\})$ et ceci contredit le fait que f est un hémimorphisme de $G - \{x, y\}$ sur $G - \{z, t\}$.

Cas 2. $\Delta_2^{(3)}(G) \le 1$. Si n=5, on conclut par la remarque 1. Si $n \ge 6$ alors $\Delta^{(3)}(G) \ge 1$ (c'est la première instance du théorème de Ramsey). Il s'ensuit que $\Delta_2^{(3)}(G) = 1$ et donc la famille \mathcal{F} des parties homogènes à trois éléments de V(G) est un système de Steiner. Il en résulte que $|\mathcal{F}| = \frac{1}{6}n(n-1)$ et que n est congru à 1 ou à 3 modulo 6. Par ailleurs, d'après la minoration du nombre des parties homogènes à trois éléments d'un graphe arbitraire, obtenue par A.W. Goodman [5], on a $|\mathcal{F}| \ge \frac{1}{24}n(n-1)(n-5)$ et par suite $n \le 9$. Il nous reste donc à exclure les cas n=7 et n=9. Nous procédons comme suit.

Fait 1. D_{uv} est une clique d'au plus deux éléments pour toute paire $\{u, v\} \in E(G)$. En effet, si d_1 et d_2 sont deux éléments distincts de D_{uv} et si la paire $\{d_1, d_2\}$ n'est pas une arête de G alors $\{d_1, d_2, u\}$ et $\{d_1, d_2, v\}$ sont deux parties homogènes de G ayant une paire en commun, ce qui contredit $\Delta_2^{(3)}(G) = 1$. Ainsi D_{uv} est une clique.

de G ayant une paire en commun, ce qui contredit $\Delta_2^{(3)}(G)=1$. Ainsi D_{uv} est une clique. Supposons que D_{uv} contienne trois éléments distincts d_1, d_2, d_3 . Soit w un élément de D_{ud_1} . Comme $\{d_1, d_2, d_3\}$ est une clique de G, cet élément est distinct de d_2 et d_3 . Or $\Delta_{wu}^{(3)}(G)=1$, donc $\{d_2, w\} \in E(G)$ et $\{d_3, w\} \in E(G)$. Mais alors $\{d_1, d_2, d_3\}$ et $\{d_1, d_2, w\}$ sont deux parties homogènes de G ayant une paire en commun. Contradiction.

Fait 2. $|f(D_{xy}) \cap D_{zt}| \le 1$. En effet, si D_{xy} contient deux éléments distincts d, d' tels que f(d), $f(d') \in D_{zt}$, on a $\{d, d'\} \in E(G)$ car D_{xy} est une clique. Par ailleurs, f est un anti-isomorphisme donc $\{f(d), f(d')\} \notin E(G)$, ceci contredit le fait que D_{zt} est une clique.

Fait 3. $|B_{xy} \cup C_{xy}| \le 2$. En vertu du fait 1, il suffit de montrer que $f(B_{xy} \cup C_{xy}) \subseteq D_{zt}$. Comme $\Delta_2^{(3)}(G) = 1$, on a $|A_{xy}| = 1$, $|A_{zt}| = 1$. Soient a, a' tels que $A_{xy} = \{a\}$ et $A_{zt} = \{a'\}$. D'après le lemme 3(i), on a f(a) = a'. Soit $u \in B_{xy} \cup C_{xy}$. Le sommet a n'est pas adjacent à u car $\Delta_{xa}^{(3)}(G) = \Delta_{ya}^{(3)}(G) = 1$. Par ailleurs, f est un anti-isomorphisme donc f(a) = a' est adjacent à f(u), et par suite $f(u) \notin B_{zt} \cup C_{zt}$ car $\Delta_{za'}^{(3)}(G) = \Delta_{ta'}^{(3)}(G) = 1$. Donc $f(u) \in D_{zt}$. Il en résulte que $f(B_{xy} \cup C_{xy}) \subseteq D_{zt}$ et par suite $|B_{xy} \cup C_{xy}| \le |D_{zt}| \le 2$.

D'après les faits 1, 2 et 3, on a $n = |A_{xy}| + |B_{xy} \cup C_{xy}| + |D_{xy}| + 2 \le 7$. Donc n = 7, $|D_{xy}| = |D_{zt}| = 2$ et $|B_{xy} \cup C_{xy}| = |B_{zt} \cup C_{zt}| = 2$. Par suite $|E(G - \{x, y\})| = |E(G - \{z, t\})| = |E(G)| - 5$. Or $G - \{x, y\}$ est isomorphe à $\overline{G} - \{z, t\}$ et $|E(G - \{z, t\})| + |E(\overline{G} - \{z, t\})| = |E(\overline{G} - \{z, t\})| = |E(\overline{G} - \{z, t\})| = 5$. Il s'ensuit que pour tous $v \neq w \in V(G)$, $|E(G - \{v, w\})| = 5$ car G est (-2)-monohémimorphe. Soit $\alpha \in V(G)$. On a alors, $|E(G - \alpha)| = \frac{1}{n-3} \sum_{x \in V(G - \alpha)} |E(G - \{\alpha, x\})| = \frac{30}{4}$. D'où la contradiction. \square

Notons qu'en vertu du lemme 4 si f est isomorphisme de $G - \{x, y\}$ sur $G - \{z, t\}$ alors soit $\{x, y\}, \{z, t\} \notin E(G)$ soit $\{x, y\}, \{z, t\} \notin E(G)$.

Corollaire 5. Un graphe (-2)-monohémimorphe G à au moins 5 sommets est régulier.

Démonstration. Si |V(G)| = 5, on conclut par la remarque 1. Supposons que $|V(G)| \ge 6$. Notons que si u et v sont deux sommets distincts d'un graphe quelconque G, on a $d_G(u) + d_G(v) = |E(G)| - |E(G - \{u, v\})| + G(uv)$ (notation dans laquelle G(uv) = 1 si $\{u, v\} \in E(G)$ et G(uv) = 0 sinon). Soit alors $x \ne y \in V(G)$. Comme $|V(G)| \ge 6$, on a $\Delta_2^{(3)}(G) \ge 1$ et par suite il existe $z \in V(G) - \{x, y\}$ tel que $\{x, y, z\}$ est une partie homogène de G. D'après le lemme 4, les graphes $G - \{x, y\}$, $G - \{x, z\}$ et $G - \{y, z\}$ ont le même nombre d'arêtes. Il s'ensuit que $d_G(y) + d_G(z) = d_G(x) + d_G(y) = d_G(x) + d_G(z)$. Par suite $d_G(x) = d_G(y)$. \square

3. Preuve du théorème principal

Nous allons, à présent, démontrer le théorème principal de cette Note.

Démonstration. Les graphes complets et vides sont trivialement (-2)-monohémimorphes. Par ailleurs, il est facile de montrer que les graphes auto-complémentaires et arête-transitifs sont (-2)-monohémimorphes.

Réciproquement, soit G un graphe (-2)-monohémimorphe à au moins 5 sommets. Si |V(G)| = 5, on conclut par la remarque 1. Supposons, dans toute la suite, que $|V(G)| \ge 6$. Soit $\{x, y\} \in E(G)$ et $z \ne t \in V(G)$ et f un hémimorphisme de $G - \{x, y\}$ sur $G - \{z, t\}$.

Fait 1. $f(B_{xy} \cup C_{xy}) = B_{zt} \cup C_{zt}$. En effet, d'après le corollaire 5, G est régulier, donc il existe $k \ge 1$ tel que $d_G(u) = k$ pour tout u de V(G).

Cas 1. $\{z,t\} \in E(G)$. D'après le lemme 4, f un isomorphisme de $G - \{x,y\}$ sur $G - \{z,t\}$. On a alors pour tout $z \in V(G) \setminus \{x,y\}$, $d_{G - \{x,y\}}(z) = d_{G - \{z,t\}}(f(z))$. Il s'ensuit que pour tout u de $V(G) \setminus \{x,y\}$, on a

$$d_{G - \{x,y\}}(u) = \begin{cases} k - 2 & \text{si } u \in A_{xy} \\ k - 1 & \text{si } u \in B_{xy} \cup C_{xy} \\ k & \text{si } u \in D_{xy} \end{cases} \text{ et } d_{G - \{z,t\}} (f(u)) = \begin{cases} k - 2 & \text{si } f(u) \in A_{zt} \\ k - 1 & \text{si } f(u) \in B_{zt} \cup C_{zt} \\ k & \text{si } f(u) \in D_{zt} \end{cases}$$

Donc $f(A_{xy}) = A_{zt}$, $f(D_{xy}) = D_{zt}$ et $f(B_{xy} \cup C_{xy}) = B_{zt} \cup C_{zt}$.

Cas 2. $\{z,t\} \notin E(G)$. D'après le lemme 3, on a $f(A_{xy}) = D_{zt}$. Soit $a \in A_{xy}$. On a alors $d_{G-\{x,y\}}(a) = k-2$ et $d_{G-\{z,t\}}(f(a)) = k$ car $f(a) \in D_{zt}$. Donc f est forcément un anti-isomorphisme. Il s'ensuit que $d_{G-\{x,y\}}(a) = |V(G)| - 3 - d_{G-\{z,t\}}(f(a))$ et par conséquent, |V(G)| = 2k+1. Soit $d \in D_{xy}$. On a $d_{G-\{x,y\}}(d) = k = |V(G)| - 3 - d_{G-\{z,t\}}(f(d))$. Si $f(d) \in B_{zt} \cup C_{zt}$ alors $d_{G-\{z,t\}}(f(d)) = k-1$ et par suite |V(G)| = 2k+2, contradiction. Il en résulte que $f(d) \in A_{zt}$. Donc $f(D_{xy}) \subseteq A_{zt}$. Soit $q \in B_{xy} \cup C_{xy}$. On a $d_{G-\{z,t\}}(q) = k-1 = |V(G)| - 3 - d_{G-\{z,t\}}(f(q))$. Si $f(q) \in A_{zt}$ alors $d_{G-\{z,t\}}(f(q)) = k-2$ et par suite |V(G)| = 2k, contradiction. Il en résulte que $f(q) \in B_{zt} \cup C_{zt}$. Donc $f(B_{xy} \cup C_{xy}) \subseteq B_{zt} \cup C_{zt}$. Comme f est bijective, on aura $f(D_{xy}) = A_{zt}$ et $f(B_{xy} \cup C_{xy}) = B_{zt} \cup C_{zt}$.

Fait 2. $f(B_{xy}) = B_{zt}$ ou $f(B_{xy}) = C_{zt}$. En effet, supposons qu'il existe $b \neq b' \in B_{xy}$ tels que $f(b) \in B_{zt}$ et $f(b') \in C_{zt}$. On a alors $\Delta_{bb'}^{(3)}(G - \{x, y\}) = \Delta_2^{(3)}(G) - 1$ et $\Delta_{f(b)f(b')}^{(3)}(G - \{z, t\}) = \Delta_2^{(3)}(G)$ et ceci contredit le fait que f est un hémimorphisme de $G - \{x, y\}$ sur $G - \{z, t\}$. Donc $f(B_{xy}) \subseteq B_{zt}$ ou $f(B_{xy}) \subseteq C_{zt}$. Par ailleurs, on a $d_G(x) = |A_{xy}| + |B_{xy}| + 1$, $d_G(y) = |A_{xy}| + |C_{xy}| + 1$. Comme G est régulier, on a $|B_{xy}| = |C_{xy}|$.

Cas 1. $\{z, t\} \in E(G)$. Dans ce cas $d_G(z) = |A_{zt}| + |B_{zt}| + 1$, $d_G(t) = |A_{zt}| + |C_{zt}| + 1$.

Cas 2. $\{z, t\} \notin E(G)$. Alors $d_G(z) = |A_{zt}| + |B_{zt}|$, $d_G(t) = |A_{zt}| + |C_{zt}|$.

Comme G est régulier, dans les deux cas on a $|B_{zt}| = |C_{zt}|$. Or $|B_{xy}| = |C_{xy}|$ et d'après le fait 1, $|B_{xy} \cup C_{xy}| = |B_{zt} \cup C_{zt}|$, donc $|B_{xy}| = |C_{xy}| = |B_{zt}| = |C_{zt}|$. Il s'ensuit que $f(B_{xy}) = B_{zt}$ ou $f(B_{xy}) = C_{zt}$. Avec le fait 2, on procède comme suit.

- (a) Supposons que $\{z,t\} \in E(G)$ et $f(B_{xy}) = B_{zt}$ (resp. $f(B_{xy}) = C_{zt}$). On a alors $f(C_{xy}) = C_{zt}$ (resp. $f(C_{xy}) = B_{zt}$) car $f(B_{xy} \cup C_{xy}) = B_{zt} \cup C_{zt}$. Dans ce cas la permutation \overline{f} de V(G) qui coïncide avec f sur $V(G) \{x, y\}$ et telle que $\overline{f}(x) = z$ et $\overline{f}(y) = t$ (resp. $\overline{f}(x) = t$ et $\overline{f}(y) = z$) est un automorphisme de G et on a $\overline{f}(\{x, y\}) = \{z, t\}$.
- (b) Supposons que $\{z,t\} \notin E(G)$ et $f(B_{xy}) = B_{zt}$ (resp. $f(B_{xy}) = C_{zt}$). On a alors $f(C_{xy}) = C_{zt}$ (resp. $f(C_{xy}) = B_{zt}$) car $f(B_{xy} \cup C_{xy}) = B_{zt} \cup C_{zt}$. Dans ce cas, la permutation \overline{f} de V(G) qui coïncide avec f sur $V(G) \{x, y\}$ et telle que $\overline{f}(x) = t$ et $\overline{f}(y) = z$ (resp. $\overline{f}(x) = z$ et $\overline{f}(y) = t$) est un isomorphisme de G sur \overline{G} .

D'après (b), les graphes G et \overline{G} sont isomorphes et par suite G est auto-complémentaire. \square

Remerciements

Nos sincères remerciements au rapporteur pour ses remarques et suggestions.

Références

- [1] J.L. Berggren, An algebraic characterization of finite symmetric tournaments, Bull. Austral. Math. Soc. 6 (1972) 53-59.
- [2] Y. Boudabbous, Reconstructible and half-reconstructible tournaments: application to their groups of hemimorphisms, MLQ Math. Log. Q. 45 (3) (1999) 421-431
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976, x+264 pp.
- [4] R. Fraïssé, Theory of Relations, North-Holland Publ. Co., Amsterdam, 1986.
- [5] A.W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959) 778-783.
- [6] M. Jean, Line-symmetric tournaments, in: Recent Progress in Combinatorics, Academic Press, New York, 1969, pp. 265-271.
- [7] W.M. Kantor, Automorphism groups of designs, Math. Z. 109 (1969) 246-252.
- [8] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001) 209-229.
- [9] M. Pouzet, Sur certains tournois reconstructibles. Applications à leurs groupes d'automorphismes, Discrete Math. 24 (1978) 225-229.