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degrees. This completes the result of J. Herzog and T. Hibi who proved that a simplicial
Presented by the Editorial Board complex is sequentially Cohen-Macaulay if and only if the ideal associated to its Alexander
dual is componentwise linear.
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RESUME

Nous donnons une condition nécessaire et suffisante pour qu'un complexe simplicial soit
approximativement Cohen-Macaulay. Précisément, un complexe est approximativement
Cohen-Macaulay si et seulement si I'idéal associé a son dual d’Alexander est engendré
en deux degrés consécutifs et chacune de ses composantes a une résolution linéaire. Cela
compléte le résultat de J. Herzog et T. Hibi, qui démontrent qu’'un complexe simplicial est
séquentiellement Cohen-Macaulay si et seulement si chacune des composantes de I'idéal
associé a son dual d’Alexander a une résolution linéaire.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [3] J. Eagon and V. Reiner proved that a simplicial complex is Cohen-Macaulay if and only if the ideal associated to
its Alexander dual has linear resolution. Later J. Herzog and T. Hibi [5] generalized it and proved that a simplicial complex
is sequentially Cohen-Macaulay if and only if the ideal associated to its Alexander dual is componentwise linear. We use
their result to give a similar equivalent condition for a simplicial complex to be approximately Cohen-Macaulay.

We begin with a brief introduction to the topic. When we say that a simplicial complex is Cohen-Macaulay, sequentially
Cohen-Macaulay, or approximately Cohen-Macaulay, we always think that its Stanley-Reisner ring has this property.

Definition 1. For a simplicial complex A on the set of vertices {1,...,n} and a field K, the Stanley-Reisner ring (or face ring)
is the ring K[x1, ..., x;]1/1ao =K[A], where I, is generated by all squarefree monomials x;, - - - x;, for which {iy, ...,i} is not
a face in A.
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We recall combinatorial description of Cohen-Macaulay complexes:

Definition 2. Let o be a simplex in a simplicial complex A. The link of o in A, denoted by lkao, is the simplicial complex
{ftreA: tTNo=Pand TUO € A}.

Theorem 1. (See Reisner [7].) Let R = K[A] be the face ring of A. Then the following conditions are equivalent:

(1) Ris Cohen-Macaulay ring.
(2) Hi(lkano) =0 ifi < dim(lkao) for all simplices o € A.

For some techniques of counting homology we refer the reader to Section 3.2 of [6]. We need also the following defini-
tions:

Definition 3. (See [4].) A non-Cohen-Macaulay local ring A is called approximately Cohen-Macaulay if there is an element a
in the maximal ideal such that A/(a") is Cohen-Macaulay ring of dimension dim(A) — 1 for all n > 0.

Definition 4. A ring A of dimension d is called sequentially Cohen-Macaulay if there exists a filtration of ideals of A:

0=DoCDiC---CD=A
such that each D;/D;_q is Cohen-Macaulay and

0 <dim(D1/Dp) <dim(D3/D1) < --- <dim(D¢/D;—1) =d.
Definition 5. Let A be a simplicial complex on the set of vertices V, we define its Alexander dual to be A*={V \o: o ¢ A}.
Definition 6. We say that a graded ideal I C A is componentwise linear if I; has linear resolutions for each degree j.
There is a nice description of approximately Cohen-Macaulay rings:
Proposition 1. (See [2].) Let A be a non-Cohen-Macaulay local ring of dimension d. Then the following conditions are equivalent:

(1) A is an approximately Cohen-Macaulay ring.
(2) A s a sequentially Cohen-Macaulay ring with filtration 0 = Do C D1 C D, = A, where dim(D1) =d — 1.

2. Equivalent condition

We will make use of the following result of J. Herzog and T. Hibi [5]:

Theorem 2. (See [5].) Let A be a simplicial complex. Then Stanley-Reisner ring K[A] is sequentially Cohen-Macaulay if and only if
I A+, the ideal associated to its Alexander dual, is componentwise linear.

Our theorem reads as follows:

Theorem 3. Let A be a simplicial complex. Then the Stanley-Reisner ring K[A] is approximately Cohen-Macaulay if and only if 1 o,
ideal associated to its Alexander dual, is componentwise linear and generated in two consecutive degrees.

Proof. By Proposition 1, K[A] is approximately Cohen-Macaulay if and only if K[A] is a sequentially Cohen-Macaulay ring
with filtration

where dim(D1) =d — 1. Due to the Theorem 2 of Herzog and Hibi this is equivalent to componentwise linearity of I+, and
existence of a filtration

0=DgC D1 C Dy, =K[A],

where dim(D1) =d — 1. From appendix of [1] we get that if such a filtration exists, then it is unique and coincides with the
one given by

0=MoC - CMi_1=1I, yi;- C - CK[A],
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where I, (-1 is the ideal in K[A] generated by monomials x4, with A € A\ A= The simplicial complex AUi=1 is
generated by faces of A of dimension at least j; — 1, where j; —1 < --- < js—1 are the dimensions of facets of A. We have
also that dim(AUi—1) = j; — 1. Hence the desired filtration exists if and only if A has facets of dimension d and d — 1. Ideal
Ia+ is generated by monomials x4 for A ¢ A*, that is, for A=V \ o, where o € A. We have to take all x4 corresponding to
facets and they all already generate ideal. Hence the ideal I+ is generated in two consecutive degrees v —d and v —(d — 1),
where |V| = v. Since each step of our reasoning was an equivalence, the contrary also holds. O
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