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RESUME

En 1965 Paul Erdds a introduit la valeur f>(s) comme le plus petit entier tel que tout
entier | > f>(s) est la somme de s premiers ou carrés de premiers distincts, ol un nombre
premier et son carré ne sont simultanément utilisés. Nous démontrons que pour tout s
suffisamment grand on a f>(s) < p2 + p3 + -+ + pst+1 + 3106 et que I'ensemble des s
réalisant I'égalité est de densité 1.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Denote by us the least integer such that every integer £ > us is the sum of exactly s integers > 1 which are pairwise
relatively prime. In 1964, Sierpinski [4] asked for determination of us. In order to study Sierpinski’s problem, P. Erdés [3]
introduced f1(s), f2(s) and f3(s). Denote by f1(s) the least integer such that every integer ¢ > f1(s) is the sum of s distinct
primes; fo(s) is the smallest integer such that every £ > f,(s) is the sum of s distinct primes or squares of primes where
a prime and its square are not both used; and f3(s) is the least integer such that every integer ¢ > f3(s) is the sum of
s distinct integers > 1 which are pairwise relatively prime. Let p; =2, p, =3, ... be the sequence of consecutive primes.
Clearly, us = f3(5) < f2(5) < f1(s). We have determined s for all s.

In 1965, P. Erdds [3] proved that f,(s) < p2 + p3 + -+ ps+1 + C, where C is an absolute constant.

In this Note, the following results are proved:

Theorem 1. (a) For s > so, f2(s) < p2 + p3 +--- + ps+1 + 3106;
(b) If s > so and ps+2 — ps+1 > 3106, then fo(s) = p2 + p3 +--- + ps+1 +3106;
(c) The set of s with f2(s) = p2 + p3 + -+ - + Ps+1 + 3106 has the density 1.
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2. Proofs

Lemma 1. (See [2].) For x > 24 there exists a prime in (X, \/gx].

Lemma 2. Every even number n > 3106 can be expressed as the sum of distinct p,% — pk (k > 2). The number 3106 cannot be expressed
as the sum of distinct p2 — py (k > 2).

Proof. The proof is by induction on the even number n. Let

Vi={0},  Vip=ViU(Vi+piy —piv1), i=12,....

By Mathematica, we find that [3108, 10000] N (2Z) C V30 and 3106 ¢ V3p. Hence, if n is even with 3108 < n < 10000, then
n can be expressed as the sum of distinct p,% —pr (k>=2).
Now assume that for any even integer n with 3108 <n < 2m (2m > 10000), n can be expressed as the sum of distinct

pp — b (k>2).
Since 2m — 3108 > 10000 — 3108 > 832 — 83, there exists a prime p, > 83 with
P2 — pu<2m—3108 < p2.1 — Put1. (1)
Then

3108 < 2m — (p2 — pu) <2m.

By the induction hypothesis, we have

2m— (p2 —pu) = i(qzz —qi),

i=1
where q1 < --- < q; are distinct odd primes. Hence

t

2m=>"(a7 —ai) + (P} — pu)- (2)
i=1

By (1) and Lemma 1, we have
2m < p?., — 3108<§2— 3108 < 2(p? —
Pip1 — Put1 + <Py —Put <2(ps — pu).

So qf — q¢ < p2 — pu. Thus, by (2), 2m can be expressed as the sum of distinct pZ — pi (k > 2).
If 3106 can be expressed as the sum of distinct p,f — pr (k> 2), then p,% — pr < 3106. Then k < 30 and 3106 € V3o,
a contradiction. This completes the proof of Lemma 2. O

Lemma 3. (See [3].) We have f>(s) < p2 + p3 + -+ ps+1 + C, where C is an absolute constant.

Proof of Theorem 1. (a) Let sop be the least integer with 50ps, > C, where C is as in Lemma 3. We may assume that
C > 3106. Then so > 16 and ps, > 53. Let s > sg and ¢ be an integer with

p2+p3+---+psy1+3106 <€ < p2+p3+---+ psy1 +C.
Write

£=pa2+p3+---+psy1 40

Then 3106 <n < C and p? —Ds =252ps > ps41+C>psy1+n—2>n.
Case 1: nn is even. By Lemma 2, we have

(Pe* —pr), onef{l,2}.

0
[\

Since pf — ps >n, we have o =1 for all k > s. Thus

s+1

C=py+ps+-+pss1+n=) pe*. aefl.2).
k=2
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Case 2: n is odd. By Lemma 2, we have
Psy1+n—2= Z “— i), are(l1,2).
Since pf — Ps > Ps+1 +n — 2, we have o =1 for all k > s. Thus

N
C=pa+ps+-+psy+n=pi+ Yy pp*. ae(l.2).

k=2

By Cases 1 and 2, for all s > sp, we have f>(s) <py+p3+---+ ps+1 +3106.
(b) Assume that ps+2 — ps+1 > 3106. Suppose that

P2+ Pp3+---+ Psr1 +3106 =q7" +--- +q5°

with all o € {1,2} and qy, ..., qs are distinct primes. By comparing the parities of both sides, we have that q1,...,qs are
distinct odd primes. Thus q; > pi+1 (1 <i<5). If ¢s > ps+1, then

3106 = Z f—Pit1) 245 — Ps+1 = Ps+2 — Ps41 > 3106,

a contradiction. Hence g5 < ps+1. Thus q; = pj+1 forall 1 <i<s. So

s+1
3106 = Z (pp* — py).

this contradicts Lemma 2. Therefore p; + p3 + -+ 4+ ps+1 + 3106 is not the sum of s distinct primes or squares of primes
where a prime and its square are not both used. So, by (a), we have f>(s) =p2 + p3+---+ ps+1 + 3106.

(c) It follows from the fact that the number of primes p < x with p + k being prime is O (x/(logx)?) for each k =2
4,6,...,3106 (see [1]).

This completes the proof of Theorem 1. O
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