FISFVIFR

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Mathematical Analysis/Dynamical Systems

Sharp large deviations for some hyperbolic flows

Larges déviations exactes pour certains flots hyperboliques

Vesselin Petkov^a, Luchezar Stoyanov^b

ARTICLE INFO

Article history: Received 28 June 2012 Accepted 27 July 2012 Available online 14 August 2012

Presented by the Editorial Board

ABSTRACT

We prove a sharp large deviation principle concerning intervals shrinking with subexponential speed for certain models involving the Poincaré map related to a Markov family for an Axiom A flow restricted to a basic set satisfying some additional regularity assumptions

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

On justifie le principe de larges déviations exactes avec des intervalles décroissants subexponentiellement pour certains modèles concernant l'application de Poincaré associée à une famille de Markov pour un Axiom A flot restreint à un ensemble basique qui satisfait des conditions de régularité additionnelles.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Récemment, Pollicott et Sharp [6] ont obtenu un résultat de larges déviations pour des intervalles $(p-\delta_n,p+\delta_n)$ avec $\delta_n\to 0$ quand $n\to\infty$ dans le cas d'un difféomorphisme hyperbolique $f:X\longrightarrow X$. Soit Ψ une fonction continue Hölderiennne qui satisfait certaines conditions Diophantiennes associées aux trois orbites périodiques de f. Supposons que l'état d'équilibre m_Ψ de Ψ n'est pas la mesure d'entropie maximale de f et que la suite $\{\delta_n\}$ de nombres positifs est telle que $1/\delta_n=O(n^{1+\kappa}),\ n\to\infty$ avec $\kappa>0$. Alors dans [6] on prouve que pour tout p dans l'intervalle (1) on a la limite (2). On se propose dans cette Note d'obtenir des exemples quand la limite (2) est valable dans le cas quand $\delta_n\to 0$ avec une vitesse sous-exponentielle, c'est-à-dire quand (4) est satisfait. De plus, dans le Théorème 1 nous démontrons que pour les fonctions qu'on étudie, si δ_n satisfait (5) avec $\alpha_0>0$ suffisament petit, l'asymptotique (2) n'est pas valable et nous avons la limite (6). A notre connaissance il semble que c'est le premier résultat de larges déviations exactes avec une limite précise différente de la fonction «rate» -J(p) déterminée par (7).

Soit $\varphi_t: M \longrightarrow M$ un C^2 Axiom A flot sur une variété Riemannienne M et soit Λ un ensemble basique de φ_t . Dans notre modèle le rôle de X est joué par l'union de rectangles $R_i = [U_i, S_i]$ d'une famille de Markov $R = \{R_i\}_{i=1}^k$ (cf. [1]). Soit $\mathcal{P}: R \longrightarrow R$ et $\tau: R \longrightarrow [0, \infty)$ l'application de Poincaré et le *premier temps de retour* respectifs tels qu'on a $\varphi_{\tau(X)}(x) = \mathcal{P}(x)$. Dans le modèle qu'on examine, l'application \mathcal{P} joue le rôle de f. Etant donnée une fonction continue Hölderienne $F: \Lambda \longrightarrow \mathbb{R}$ et une fonction Lipschitzienne $G: \Lambda \longrightarrow \mathbb{R}^+$, on introduit $\Psi(x) = G^{\tau(x)} = \int_0^{\tau(x)} G(\varphi_t(x)) dt$ et $\Phi(x) = F^{\tau(x)} = \int_0^{\tau(x)} F(\varphi_t(x)) dt$ et pour une fonction h sur R et un entier n > 1 on pose $h^n(x) = h(x) + h(\mathcal{P}(x)) + \cdots + h(\mathcal{P}^{n-1}(x))$, $x \in R$.

^a Université Bordeaux I, institut de mathématiques, 351, cours de la Libération, 33405 Talence, France

^b University of Western Australia, School of Mathematics and Statistics, Perth, WA 6009, Australia

On peut représenter φ_t sur Λ par le flot suspendu sur l'ensemble suspendu $R_{\tau} = \{(x,t): x \in R, \ 0 \leqslant t < \tau(x)\}$ (cf. Ch. 6 dans [4]). On suppose que la représentation de G sur R_{τ} est constante sur les foliations stables, c'est-à-dire sur chaque ensemble de la forme $\{([x,y],t): y \in S_i\}$ (voir Sect. 1 pour la définition de [x,y]), où $i=1,\ldots,k, \ x \in U_i$ et $t \in [0,\tau(x)]$. De plus, on suppose que $\frac{\operatorname{Lip}(G)}{\min G} \leqslant \mu_0$ avec une petite constante $\mu_0 > 0$.

Sous certaines hypothèses de régularité du flot φ_t (voir les conditions (A), (B), (C) dans Sect. 1) notre résultat principal

Sous certaines hypothèses de régularité du flot φ_t (voir les conditions (A), (B), (C) dans Sect. 1) notre résultat principal est le Théorème 1 dans lequel on établit la limite (6) en supposant que δ_n satisfait (5). La preuve du Théorème 1 est basée sur des estimations des itérations de l'opérateur de transfert de Ruelle $\mathcal{L}_{\Phi+(\xi+\mathbf{i}u)\Psi}$ associé à $\Phi+(\xi+\mathbf{i}u)\Psi$, $\xi,u\in\mathbb{R}$, démontrées dans le Théorème 2. Les preuves détailées de nos résultats sont incluses dans [5].

1. Introduction

It follows from general large deviation principles (see [3,11]) that if X is a mixing basic set for an Axiom A diffeomorphism f, Φ and Ψ are Hölder continuous functions on X with equilibrium states m_{Φ} and m_{Ψ} , respectively, and m_{Ψ} is not the measure of maximal entropy of f on X, then there exists a real-analytic rate function $J: Int(\mathcal{I}_{\Psi}) \longrightarrow [0, \infty)$, where

$$\mathcal{I}_{\Psi} = \left\{ \int \Psi \, \mathrm{d}m \colon m \in \mathcal{M}_X \right\},\tag{1}$$

 \mathcal{M}_X being the set of all f-invariant Borel probability measures on X, such that

$$\lim_{\delta \to 0} \lim_{n \to \infty} \frac{1}{n} \log m_{\Phi} \left(\left\{ x \in X : \frac{\Psi^{n}(x)}{n} \in (p - \delta, p + \delta) \right\} \right) = -J(p), \quad \forall p \in \operatorname{Int}(\mathcal{I}_{\Psi}).$$
 (2)

Since m_{Ψ} is not the measure of maximal entropy, Ψ is not cohomologous to a constant and $\operatorname{Int}(\mathcal{I}_{\Psi}) \neq \emptyset$. Moreover, J(p) = 0 if and only if $p = \int \Psi \, \mathrm{d} m_{\Phi}$.

Many results on large deviations for hyperbolic (discrete and continuous) dynamical systems have been established in both the uniformly hyperbolic case and the non-uniformly hyperbolic case (see [3,11,6,7,10] and the references given there). Recently, Pollicott and Sharp [6] obtained a large deviation result for shrinking intervals $(p - \delta_n, p + \delta_n)$ with $\delta_n \to 0$ as $n \to \infty$ in the case of a hyperbolic diffeomorphism $f: X \longrightarrow X$. Assuming that the Hölder continuous function Ψ satisfies a certain Diophantine condition related to three periodic orbits of f, the equilibrium state m_{Ψ} of Ψ is not the measure of maximal entropy of f, and the sequence $\{\delta_n\}$ of positive numbers is such that $1/\delta_n = O(n^{1+\kappa})$ as $n \to \infty$ for some appropriately chosen $\kappa > 0$, they proved that

$$\lim_{n \to \infty} \frac{1}{n} \log m_{\Phi} \left(\left\{ x \in X : \frac{\Psi^{n}(x)}{n} \in (p - \delta_{n}, p + \delta_{n}) \right\} \right) = -J(p)$$
(3)

for all $p \in Int(\mathcal{I}_{\psi})$. As a consequence they derived a fluctuation theorem in a similar setup.

Our aim in this Note is to obtain a class of examples where this holds in the case when $\delta_n \to 0$ with *sub-exponential speed*, i.e. when

$$\lim_{n \to \infty} \frac{\log \delta_n}{n} = 0. \tag{4}$$

We also show that for the class of functions we deal with, if $\lim_{n\to\infty}\frac{\log\delta_n}{n}=-\alpha_0$ for some sufficiently small $\alpha_0>0$, the asymptotic (3) is not true and we have a lower bound $-J(p)-\alpha_0$. Thus our result in this situation is optimal. To our best knowledge, it seems that this is the first result with a precise limit different from -J(p).

Unlike [6], in our model the role of X is played by the union of all rectangles in a Markov family for a flow restricted to a basic set Λ and f is just the corresponding Poincaré map. Let $\varphi_t: M \longrightarrow M$ $(t \in \mathbb{R})$ be a C^2 Axiom A flow on a Riemannian manifold M and let Λ be a basic set for φ_t . It follows from [1] (see also [2]) that there exists a Markov family $R = \{R_i\}_{i=1}^k$ of rectangles $R_i = [U_i, S_i]$ of arbitrarily small size $\chi > 0$ for the restriction of the flow φ_t to Λ . Let $\mathcal{P}: R \longrightarrow R$ and $\tau: R \longrightarrow [0, \infty)$ be the corresponding Poincaré map and first return time, respectively, so that $\varphi_{\tau(x)}(x) = \mathcal{P}(x)$. The shift map $\sigma: U = \bigcup_{i=1}^k U_i \longrightarrow U$ is given by $\sigma = \pi^{(U)} \circ \mathcal{P}$, where $\pi^{(U)}: R \longrightarrow U$ is the projection along stable leaves. We can model φ_t on Λ by using the so-called suspended flow on the suspension set $R_\tau = \{(x,t): x \in R, 0 \le t \le \tau(x)\}$ (see e.g. Ch. 6 in [4]). Let $F, G: \Lambda \longrightarrow \mathbb{R}$ be Hölder continuous functions. Throughout this Note we assume the following:

Standing assumptions.

- (A) φ_t is a mixing flow on a basic set Λ , φ_t and Λ satisfy the conditions LNIC, (R_1) and (R_2) stated below and the local holonomy maps along stable laminations through Λ are uniformly Lipschitz.
- (B) $R = \{R_i\}_{i=1}^{k}$ is a fixed Markov family of rectangles $R_i = [U_i, S_i]$ for the restriction of the flow φ_t to Λ , chosen so that the matrix $\mathcal{A} = \{a_{i,j}\}_{i,j=1}^{k}$ related to R is irreducible.
- (C) $F: \Lambda \longrightarrow \mathbb{R}$ is a Hölder continuous function, while $G: \Lambda \longrightarrow \mathbb{R}$ is Lipschitz and its representative in the suspension space R_{τ} is constant on stable leaves, i.e. on each set of the form $\{([x, y], t): y \in S_i\}$, where $i = 1, ..., k, x \in U_i$ and $t \in [0, \tau(x)]$.

For $T\geqslant 0$ and $x\in \Lambda$ set $G^T(x)=\int_0^TG(\varphi_t(x))\,\mathrm{d}t$ and let $\mathcal{I}_0=\{\int_RG^{\tau(x)}(x)\,\mathrm{d}m(x)\colon m\in\mathcal{M}_\mathcal{P}\}$, where $\mathcal{M}_\mathcal{P}$ is the set of all \mathcal{P} -invariant Borel probability measures on R. For any function h on R, $x\in R$ and an integer $n\geqslant 1$ we set $h^n(x)=h(x)+h(\mathcal{P}(x))+\cdots+h(\mathcal{P}^{n-1}(x))$. A Hölder continuous function g(x) on R is called *non-lattice* if there do not exist constant a, a Hölder continuous function h on R and a bounded integer-valued function h on h so that h of h of h of h of h on h and a bounded integer-valued function h on h so that h of h on h

Under the standing assumptions above, in this paper we prove the following main result:

Theorem 1. There exists a constant $\mu_0 > 0$ such that for any Lipschitz function G > 0 on Λ with $\frac{\text{Lip}(G)}{\min G} \leqslant \mu_0$ for which $G^{\tau(x)}(x)$ is a non-lattice function on R there exists a rate function $J: \mathcal{I}_0 \longrightarrow [0, \infty)$ with the following property: for every Hölder continuous function F on Λ there exists a constant $\rho = \rho(F, G) \in (0, 1)$ such that for any sequence $\{\delta_n\}$ of positive numbers decreasing to zero with

$$\lim_{n \to \infty} \frac{\log \delta_n}{n} = -\alpha_0 \leqslant 0 \tag{5}$$

for some $0 \le \alpha_0 \le -\frac{\log \rho}{2}$, we have

$$\lim_{n \to \infty} \frac{1}{n} \log \mu \left(\left\{ x \in \mathbb{R} : \frac{G^{\tau^n(x)}(x)}{n} \in (p - \delta_n, p + \delta_n) \right\} \right) = -J(p) - \alpha_0, \quad \forall p \in \operatorname{Int}(\mathcal{I}_0),$$
 (6)

where μ is the equilibrium state of the function $\Phi(x) = F^{\tau(x)}(x)$ on R.

The rate function J is explicitly defined in Section 2 below. It is easy to see that there is a non-trivial open set of (essentially) Lipschitz functions $\Psi(x) = G^{\tau(x)}(x)$ on R for which Theorem 1 applies. More precisely, for any constant c > 0 there is an open neighborhood V of $c\tau$ in the space of (essentially) Lipschitz functions on R constant on stable leaves such that for any $\Psi \in V$ Theorem 1 applies. What concerns the standing assumptions, various classes of flows on basic sets satisfying these are described in [8,9] (see also the references there).

Let $W^s_{\epsilon_0}(x)$ and $W^u_{\epsilon_0}(x)$ be the strong stable and unstable manifolds of size ϵ_0 through $x \in \Lambda$. It follows from the hyperbolicity of Λ that if $\epsilon_0 > 0$ is sufficiently small, there exists $\epsilon_1 > 0$ such that if $x, y \in \Lambda$ and $d(x, y) < \epsilon_1$, then $W^s_{\epsilon_0}(x)$ and $\varphi_{[-\epsilon_0,\epsilon_0]}(W^u_{\epsilon_0}(y))$ intersect at exactly one point $[x,y] \in \Lambda$. That is, there exists a unique $t \in [-\epsilon_0,\epsilon_0]$ such that $\varphi_t([x,y]) \in W^u_{\epsilon_0}(y)$. Setting $\Delta(x,y) = t$ defines the so-called *temporal distance function*. For $x,y \in \Lambda$ with $d(x,y) < \epsilon_1$, define $\pi_y(x) = [x,y]$. Notice that τ is constant on each stable leaf $W^s_{R_i}(x) = W^s_{\epsilon_0}(x) \cap R_i$.

The following local non-integrability condition for φ_t and Λ was introduced in [8].

LNIC. There exist $z_0 \in \Lambda$, $\epsilon_0 > 0$ and $\theta_0 > 0$ such that for any $\epsilon \in (0, \epsilon_0]$, any $\hat{z} \in \Lambda \cap W^u_{\epsilon}(z_0)$ and any tangent vector $\eta \in E^u(\hat{z})$ to Λ at \hat{z} with $\|\eta\| = 1$ there exist $\tilde{z} \in \Lambda \cap W^u_{\epsilon}(\hat{z})$, $\tilde{y}_1, \tilde{y}_2 \in \Lambda \cap W^s_{\epsilon}(\tilde{z})$ with $\tilde{y}_1 \neq \tilde{y}_2$, $\delta > 0$ and $\epsilon' > 0$ such that

$$\left| \Delta \left(\exp_{z}^{u}(v), \pi_{\tilde{y}_{1}}(z) \right) - \Delta \left(\exp_{z}^{u}(v), \pi_{\tilde{y}_{2}}(z) \right) \right| \geqslant \delta \|v\|$$

for all $z \in W^u_{\epsilon'}(\tilde{z}) \cap \Lambda$ and $v \in E^u(z; \epsilon')$ with $\exp^u_z(v) \in \Lambda$ and $\langle \frac{v}{\|v\|}, \eta_z \rangle \geqslant \theta_0$, where η_z is the parallel translate of η along the geodesic in $W^u_{\epsilon_0}(z_0)$ from \hat{z} to z.

Set

$$B_T^u(x,\epsilon) = \big\{ y \in W_\epsilon^u(x) \cap \Lambda \colon d\big(\varphi_t(x), \varphi_t(y)\big) \leqslant \epsilon, 0 \leqslant t \leqslant T \big\}.$$

Following [8], we will say that ϕ_t has a *regular distortion along unstable manifolds* over the basic set Λ if there exists a constant $\epsilon_0 > 0$ with the following properties:

- (R_1) For any $0 < \delta \leqslant \epsilon \leqslant \epsilon_0$ there exists a constant $R = R(\delta, \epsilon) > 0$ such that $\operatorname{diam}(\Lambda \cap B^u_T(z, \epsilon)) \leqslant R \operatorname{diam}(\Lambda \cap B^u_T(z, \delta))$ for any $z \in \Lambda$ and any T > 0.
- (R_2) For any $\epsilon \in (0, \epsilon_0]$ and any $\rho \in (0, 1)$ there exists $\delta \in (0, \epsilon]$ such that for any $z \in \Lambda$ and any T > 0 we have diam($\Lambda \cap B_T^u(z, \delta)$) $\leq \rho \operatorname{diam}(\Lambda \cap B_T^u(z, \epsilon))$.

2. Ruelle transfer operator

Given a Markov family $\mathcal R$ as in Section 1, denote by $\widehat R$ the *core* of R, i.e. the set of those $x \in R$ such that $\mathcal P^m(x) \in \operatorname{Int}_A(R)$ for all $m \in \mathbb Z$. It is well-known (see [1]) that $\widehat R$ is a residual subset of R and has full measure with respect to any Gibbs measure on R. The set $\widehat U = U \cap \widehat R$ has similar properties. In general τ is not continuous on U, however, under the standing assumption (A), τ is *essentially Lipschitz* on U in the sense that there exists a constant L > 0 such that if $x, y \in U_i \cap \sigma^{-1}(U_j)$ for some i, j, then $|\tau(x) - \tau(y)| \leqslant Ld(x, y)$. In a similar way one defines essentially Lipschitz functions on R. Let $\operatorname{Pr}_{\mathcal P}(h)$ be the *topological pressure* of a continuous function h on R with respect to the map $\mathcal P$ on R (see e.g. [4]).

Let $F, G : \longrightarrow \mathbb{R}$ be Hölder continuous functions, and let $\Phi(x) = F^{\tau(x)}(x)$ and $\Psi(x) = G^{\tau(x)}(x)$ ($x \in R$). It is easy to check that $\Psi^n(x) = G^{\tau^n(x)}(x)$ for all $x \in R$. It follows from the Large Deviation Theorem in [3] that if m_{Ψ} is not the measure of maximal entropy for \mathcal{P} , then there exists a real-analytic function $J: \operatorname{Int}(\mathcal{I}_{\Psi}) \longrightarrow [0, \infty)$ such that J(p) = 0 iff $p = \int_{\mathbb{R}} \Psi \, dm_{\Phi}$ for which (2) holds. More precisely, we have

$$-J(p) = \inf \{ \Pr_{\mathcal{P}}(\Phi + q\Psi) - \Pr_{\mathcal{P}}(\Phi) - qp \colon q \in \mathbb{R} \}. \tag{7}$$

Let $B(\hat{U})$ be the space of bounded functions $g: \hat{U} \longrightarrow \mathbb{C}$ with its standard norm $\|g\|_{\infty} = \sup_{x \in \hat{U}} |g(x)|$. Given a function $g \in \mathcal{C}$ $B(\hat{U})$, the Ruelle transfer operator $\mathcal{L}_g: B(\hat{U}) \longrightarrow B(\hat{U})$ is defined by $(\mathcal{L}_g h)(u) = \sum_{\sigma(v)=u} e^{g(v)} h(v)$. If $g \in B(\hat{U})$ is essentially Lipschitz on \hat{U} , then \mathcal{L}_g preserves the space $C^{\text{Lip}}(\hat{U})$ of Lipschitz functions $g:\hat{U}\longrightarrow \mathbb{C}$. Let Lip(g) be the Lipschitz constant of g.

Given a Lipschitz real-valued function f on \hat{U} , set $\tilde{f} = f - P\Psi$, where $P = P_f \in \mathbb{R}$ is the unique number such that the topological pressure $\Pr_{\sigma}(\tilde{f})$ of \tilde{f} with respect to σ is zero (cf. e.g. [4]). For $a,b \in \mathbb{R}$, consider the Ruelle transfer operator $\mathcal{L}_{\tilde{f}-(a+ib)\Psi}: C^{\text{Lip}}(\hat{U}) \longrightarrow C^{\text{Lip}}(\hat{U})$. We will say that the Ruelle transfer operators related to Ψ and the function f on \hat{U} are eventually contracting if for every $\epsilon > 0$ there exist constants $0 < \rho < 1$, $a_0 > 0$ and C > 0 such that if $a, b \in \mathbb{R}$ satisfy $|a| \le a_0$ and $|b| \ge 1/a_0$, then for every integer m > 0 and every $h \in C^{\text{Lip}}(\hat{U})$ we have

$$\left\|\mathcal{L}^m_{f-(P_f+a+\mathbf{i}b)\Psi}h\right\|_{\mathrm{Lip},b} \leqslant C\rho^m|b|^\epsilon\|h\|_{\mathrm{Lip},b},$$

where the norm $\|.\|_{\text{Lip},b}$ on $C^{\text{Lip}}(\hat{U})$ is defined by $\|h\|_{\text{Lip},b} = \|h\|_{\infty} + \frac{\text{Lip}(h)}{|b|}$. This implies in particular that the spectral radius of $\mathcal{L}_{f-(P_f+a+\mathbf{i}b)\Psi}$ on $C^{\operatorname{Lip}}(\hat{U})$ does not exceed ρ .

The following theorem is one of the main ingredients in the proof of Theorem 1:

Theorem 2. Under the standing assumptions, let $\Psi(x) = G^{\tau(x)}(x)$ ($x \in R$). Then there exists a constant $\mu_0 > 0$ such that if G > 0and $\frac{\text{Lip}(G)}{\min G} \leqslant \mu_0$, then for any Hölder continuous real-valued function f on \hat{U} the Ruelle transfer operators related to Ψ and f are eventually contracting.

Consider a sequence $\{\delta_n\}_{n\in\mathbb{N}}$, $\delta_n>0$, $\delta_n\to0$, such that (5) holds and let $\epsilon_n=n\delta_n$. Fix an arbitrary $p\in \operatorname{Int}(\mathcal{I}_{\Psi})$ and set $\Psi_p = \Psi - p$. As in [6], it is enough to prove a modified result concerning a sequence of the form $\rho(n) = \int_U \chi_n(\Psi_p^n(x)) d\mu_{\Phi}$, where $\chi \in C_0^k(\mathbb{R} : \mathbb{R})$ is a fixed cut-off function and $\chi_n(x) = \chi(\epsilon_n^{-1}x)$ for $x \in \mathbb{R}$.

Proposition 3. Under the assumptions of Theorem 2, we have $\lim_{n\to\infty}\frac{1}{n}\log\rho(n)=-J(p)-\alpha_0$.

Theorem 1 follows immediately from Proposition 3 as shown in [6].

3. Idea of the proof of Theorem 2

Define the temporal Ψ -function Δ_{Ψ} by

$$\Delta_{\Psi}(x,y) = \int_{0}^{\Delta(x,y)} G(\varphi_{t}([x,y])) dt$$

for $x, y \in \Lambda$, $d(x, y) < \epsilon_1$. Just like Δ , this function is constant on stable leaves with respect to the first variable and constant on unstable leaves with respect to the second.

Given a Lipschitz real-valued function f on \hat{U} , let again $\hat{f} = f - P\Psi$, where $P = P_f$. To prove Theorem 2 we apply the arguments from Sections 3 and 5 in [8] and a modification of the arguments in Section 4 there. The main step is to prove the analogue of Lemma 4.2 in [8] with the function τ replaced by Ψ .

Following Section 4 in [8], fix an arbitrary point $z_0 \in \Lambda$ and constants $\epsilon_0 > 0$ and $\theta_0 \in (0, 1)$ with the properties described **in LNIC**. Assume that $z_0 \in \operatorname{Int}_{\Lambda}(U_1)$, $U_1 \subset \Lambda \cap W^u_{\epsilon_0}(z_0)$ and $S_1 \subset \Lambda \cap W^s_{\epsilon_0}(z_0)$.

Next, fix a C^1 parametrization $r(s) = \exp_{z_0}^u(s)$, $s \in V_0'$, of a small neighborhood W_0 of z_0 in $W_{\epsilon_0}^u(z_0)$ such that V_0' is a convex compact neighborhood of 0 in $E^u(z_0)$. Then $r(0) = z_0$ and $\frac{\partial}{\partial s_i} r(s)_{|s=0} = e_i$ for all $i = 1, \dots, n$. Set $U_0' = W_0 \cap \Lambda$, and let $\theta < \theta_1 < 1$.

Following [8], for a cylinder $C \subset U_0'$ and a unit vector $\xi \in E^u(z_0)$ we will say that a separation by a ξ -plane occurs in C if

there exist $u, v \in \mathcal{C}$ with $d(u, v) \geqslant \frac{1}{2} \operatorname{diam}(\mathcal{C})$ such that $\langle \frac{r^{-1}(v) - r^{-1}(u)}{\|r^{-1}(v) - r^{-1}(u)\|}, \xi \rangle \geqslant \theta_1$. Let \mathcal{S}_{ξ} be the *family of all cylinders* \mathcal{C} contained in U_0' such that a separation by a ξ -plane occurs in \mathcal{C} . Given an open subset V of U_0' which is a finite union of open cylinders and $\delta > 0$, let $\mathcal{C}_1, \dots, \mathcal{C}_p$ $(p = p(\delta) \geqslant 1)$ be the family of maximal closed cylinders in \bar{V} with diam $(C_j) \leq \delta$. For any unit vector $\xi \in E^u(z_0)$ set $M_{\xi}^{(\delta)}(V) = \bigcup \{C_j : C_j \in S_{\xi}, 1 \leq j \leq p\}$.

Given a sequence of unit vectors $\xi_1, \xi_2, \dots, \xi_{j_0} \in E^u(z_0)$, set $B_\ell = \{\eta \in \mathbf{S}^{n-1} \colon \langle \eta, \xi_\ell \rangle \geqslant \theta_0 \}$ for each $\ell = 1, \dots, j_0$. For $t \in \mathbb{R}$ and $s \in E^u(z_0)$ set $I_{\eta,t}g(s) = \frac{g(s+t\eta)-g(s)}{t}, t \neq 0$. The main aim is to prove the following analogue of Lemma 4.2 in [8]:

Lemma 4. There exist integers $1 \le n_1 \le N_0$ and $\ell_0 \ge 1$, a sequence of unit vectors $\eta_1, \eta_2, \dots, \eta_{\ell_0} \in E^u(z_0)$ and a non-empty open subset U_0 of U_0' which is a finite union of open cylinders of length n_1 such that setting $\mathcal{U} = \sigma^{n_1}(U_0)$ we have:

- (a) For any integer $N \geqslant N_0$ there exist Lipschitz maps $v_1^{(\ell)}, v_2^{(\ell)}: U \longrightarrow U$ $(\ell = 1, ..., \ell_0)$ such that $\sigma^N(v_i^{(\ell)}(x)) = x$ for all $x \in \mathcal{U}$ and $v_i^{(\ell)}(\mathcal{U})$ is a finite union of open cylinders of length N ($i = 1, 2; \ell = 1, 2, ..., \ell_0$).
- (b) There exists a constant $\hat{\delta} > 0$ such that for all $\ell = 1, \ldots, \ell_0$, $s \in r^{-1}(U_0)$, $0 < |h| \le \hat{\delta}$ and $\eta \in B_{\ell}$ so that $s + h\eta \in r^{-1}(U_0 \cap \Lambda)$ we have

$$\left[I_{n,h}\left(\Psi^{N}\left(v_{2}^{(\ell)}\left(\tilde{r}(\cdot)\right)\right) - \Psi^{N}\left(v_{1}^{(\ell)}\left(\tilde{r}(\cdot)\right)\right)\right)\right](s) \geqslant A\hat{\delta}/4.$$

(c) For any open cylinder V in U_0 there exists $\delta' > 0$ such that $V \subset M_{\eta_1}^{(\delta)}(V) \cup \cdots \cup M_{\eta_{\ell_0}}^{(\delta)}(V)$ for all $\delta \in (0, \delta']$.

Using the objects constructed in Lemma 4.4 in [8] and essentially repeating some of the arguments from the proof of this lemma, one gets an analogue of the lemma, where the function τ is replaced by Ψ , from which Lemma 4 above is derived using again arguments similar to these in Section 4 in [8].

Proof of Theorem 2. Once Lemma 3 is proved, for Lipschitz functions f the rest of the argument is just a repetition of Section 5 in [8] without any changes. For Hölder continuous f one just needs to combine this with the approximation procedure in [2]. Since Ψ is Lipschitz, the approximation procedure can be carried out in the same way as in [2]. \square

The detailed proofs of our results are contained in [5].

References

- [1] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429-460.
- [2] D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. 147 (1998) 357-390.
- [3] Yu. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990) 505-524.
- [4] W. Parry, M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990).
- [5] V. Petkov, L. Stoyanov, Sharp large deviations for some hyperbolic systems, preprint, arXiv:1206.2013v2 [math.DS], 2012.
- [6] M. Pollicott, R. Sharp, Large deviations, fluctuations and shrinking intervals, Comm. Math. Phys. 290 (2009) 321-334.
- [7] L. Ray-Bellet, L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems 28 (2008) 587-612.
- [8] L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows on basic sets, Nonlinearity 24 (2011) 1089-1120.
- [9] L. Stoyanov, Regular decay of ball diameters and spectra of Ruelle operators for contact Anosov flows, Proc. Amer. Math. Soc. 140 (2012) 3463-3478.
- [10] S. Waddington, Large deviation asymptotics for Anosov flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 445-484.
- [11] L.-S. Young, Large deviations in dynamical systems, Trans. Amer. Math. Soc. 318 (1990) 525-543.