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RESUME

On justifie le principe de larges déviations exactes avec des intervalles décroissants sub-
exponentiellement pour certains modéles concernant I'application de Poincaré associée a
une famille de Markov pour un Axiom A flot restreint a un ensemble basique qui satisfait
des conditions de régularité additionnelles.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Récemment, Pollicott et Sharp [6] ont obtenu un résultat de larges déviations pour des intervalles (p — &p, p + 8,) avec
8p — 0 quand n — oo dans le cas d’'un difffomorphisme hyperbolique f :X — X. Soit ¥ une fonction continue Holde-
riennne qui satisfait certaines conditions Diophantiennes associées aux trois orbites périodiques de f. Supposons que I'état
d’équilibre my de ¥ n’est pas la mesure d’entropie maximale de f et que la suite {§,} de nombres positifs est telle que
1/8, = 0(n'*%), n — oo avec k > 0. Alors dans [6] on prouve que pour tout p dans I'intervalle (1) on a la limite (2). On se
propose dans cette Note d’obtenir des exemples quand la limite (2) est valable dans le cas quand &, — 0 avec une vitesse
sous-exponentielle, c’est-a-dire quand (4) est satisfait. De plus, dans le Théoréme 1 nous démontrons que pour les fonctions
qu’'on étudie, si 8, satisfait (5) avec g > 0 suffisament petit, 'asymptotique (2) n’est pas valable et nous avons la limite (6).
A notre connaissance il semble que c’est le premier résultat de larges déviations exactes avec une limite précise différente
de la fonction «rate» — J(p) déterminée par (7).

Soit ¢; : M —> M un C? Axiom A flot sur une variété Riemannienne M et soit A un ensemble basique de ¢;. Dans
notre modele le role de X est joué par I'union de rectangles R; = [U;, S;] d’'une famille de Markov R = {Ri}i.‘:1 (cf. [1]).
Soit P: R — R et 7 : R —> [0, 00) I'application de Poincaré et le premier temps de retour respectifs tels qu'on a @) (x) =
P(x). Dans le modéle qu'on examine, I'application P joue le role de f. Etant donnée une fonction continue Holderienne

F: A — R et une fonction Lipschitzienne G : A — R, on introduit ¥ (x) = GT® = fof(x) G(p(x))dt et @(x) =F*® =

for(x) F(@¢(x))dt et pour une fonction h sur R et un entier n > 1 on pose h"(x) = h(x) + h(P(x)) + --- + h(P""1(x)), x € R.
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On peut représenter ¢; sur A par le flot suspendu sur I'ensemble suspendu R; = {(x,t): x€ R, 0<t < t(x)} (cf. Ch. 6
dans [4]). On suppose que la représentation de G sur R; est constante sur les foliations stables, c’est-a-dire sur chaque
ensemble de la forme {([x, y],t): y € S;} (voir Sect. 1 pour la définition de [x, y]), ot i=1,....k x € U; et t € [0, T(x)]. De
plus, on suppose que ;‘%GG) < o avec une petite constante (o > 0.

Sous certaines hypothéses de régularité du flot ¢; (voir les conditions (A), (B), (C) dans Sect. 1) notre résultat principal
est le Théoréme 1 dans lequel on établit la limite (6) en supposant que §, satisfait (5). La preuve du Théoréme 1 est
basée sur des estimations des itérations de I'opérateur de transfert de Ruelle L4 (¢1iwyw associé a @ + (£ +iw)¥, £, ueR,
démontrées dans le Théoréme 2. Les preuves détailées de nos résultats sont incluses dans [5].

1. Introduction
It follows from general large deviation principles (see [3,11]) that if X is a mixing basic set for an Axiom A diffeomor-

phism f, @ and ¥ are Holder continuous functions on X with equilibrium states mg and my, respectively, and my is not
the measure of maximal entropy of f on X, then there exists a real-analytic rate function J :Int(Zy) — [0, co0), where

Iq,={/llldm:me/\/lx}, (M

Mx being the set of all f-invariant Borel probability measures on X, such that

§—0n—oon n

lim lim 1logm4><{xeX: v € (p—(S,p—i—(S)}) =—J(p), Vpelnt@Zy). (2)

Since my is not the measure of maximal entropy, ¥ is not cohomologous to a constant and Int(Zy ) # @. Moreover, J(p) =0
if and only if p = [ ¥ dme.

Many results on large deviations for hyperbolic (discrete and continuous) dynamical systems have been established in
both the uniformly hyperbolic case and the non-uniformly hyperbolic case (see [3,11,6,7,10] and the references given there).
Recently, Pollicott and Sharp [6] obtained a large deviation result for shrinking intervals (p — 8, p + 8,) with §; — 0 as
n — oo in the case of a hyperbolic diffeomorphism f : X — X. Assuming that the Hélder continuous function ¥ satisfies
a certain Diophantine condition related to three periodic orbits of f, the equilibrium state my of ¥ is not the measure
of maximal entropy of f, and the sequence {8,} of positive numbers is such that 1/8, = O(n'**) as n — oo for some
appropriately chosen « > 0, they proved that

v (x)

nlipgo%logm({xex: e(p—8n,p+8n)}>=—1(p) (3)

for all p € Int(Zy). As a consequence they derived a fluctuation theorem in a similar setup.
Our aim in this Note is to obtain a class of examples where this holds in the case when 8, — 0 with sub-exponential
speed, i.e. when

. logd,
lim

n—oo n

=0. (4)
We also show that for the class of functions we deal with, if lim,_ IOgT‘S” = —qy for some sufficiently small g > 0, the
asymptotic (3) is not true and we have a lower bound — J(p) — «wp. Thus our result in this situation is optimal. To our best
knowledge, it seems that this is the first result with a precise limit different from — J(p).

Unlike [6], in our model the role of X is played by the union of all rectangles in a Markov family for a flow restricted to a
basic set A and f is just the corresponding Poincaré map. Let ¢, : M — M (t € R) be a C?> Axiom A flow on a Riemannian
manifold M and let A be a basic set for ¢;. It follows from [1] (see also [2]) that there exists a Markov family R = {Ri}{.‘:1
of rectangles R; = [Uj, S;] of arbitrarily small size y > 0 for the restriction of the flow ¢; to A. Let P: R — R and
T : R — [0, 00) be the corresponding Poincaré map and first return time, respectively, so that ¢ ) (x) = P(x). The shift map
o:U=,U;— U is given by 0 =7 o P, where 7 : R —> U is the projection along stable leaves. We can model
¢ on A by using the so-called suspended flow on the suspension set Ry = {(x,t): x€ R,0<t < t(x)} (see e.g. Ch. 6 in [4]).

Let F,G: A —> R be Hélder continuous functions. Throughout this Note we assume the following:

Standing assumptions.

(A) ¢ is a mixing flow on a basic set A, ¢; and A satisfy the conditions LNIC, (R1) and (R;) stated below and the local
holonomy maps along stable laminations through A are uniformly Lipschitz.

(B) R= {R,-}f.‘:1 is a fixed Markov family of rectangles R; = [U;, S;] for the restriction of the flow ¢; to A, chosen so that
the matrix A = {ai,j}i.‘,j:1 related to R is irreducible.

(C) F: A —> R is a Holder continuous function, while G : A —> R is Lipschitz and its representative in the suspension
space R; is constant on stable leaves, i.e. on each set of the form {([x, y],t): y € S;}, where i =1,...,k, x € U; and
te[0, T(X)].
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For T>0 and x € A set GT (x) = fOT G(pe(x)dt and let Zo = { [, G"™ (x)dm(x): m € Mp}, where Mp is the set of
all P-invariant Borel probability measures on R. For any function h on R, x € R and an integer n > 1 we set h"(x) =
h(x)+h(Px)+---+h(P"1(x)). A Holder continuous function g(x) on R is called non-lattice if there do not exist constant a,
a Holder continuous function h on R and a bounded integer-valued function Z on R so that g(x) = (hoP)(x) —h(x)+a+ Z(x)
for all x e R.

Under the standing assumptions above, in this paper we prove the following main result:

Theorem 1. There exists a constant o > 0 such that for any Lipschitz function G > 0 on A with t:]'fr(lcc) < o for which GT® (x) is
a non-lattice function on R there exists a rate function | : Zy —> [0, co) with the following property: for every Holder continuous
function F on A there exists a constant p = p(F, G) € (0, 1) such that for any sequence {3} of positive numbers decreasing to zero

with

log 8
lim —&°n
n—oo n

=—C{0§0 (5)

for some 0 < orp < —k’%, we have

1 GT'®
lim —logu({xeR: —(X)
n

n—oo

e(p—Bn,p+8n)}) =—J(p) —ao, Vp €lnt(Zp), (6)
where pu is the equilibrium state of the function & (x) = FT® (x) on R.

The rate function J is explicitly defined in Section 2 below. It is easy to see that there is a non-trivial open set of
(essentially) Lipschitz functions ¥ (x) = G*™®(x) on R for which Theorem 1 applies. More precisely, for any constant ¢ > 0
there is an open neighborhood V of ct in the space of (essentially) Lipschitz functions on R constant on stable leaves
such that for any ¥ € V Theorem 1 applies. What concerns the standing assumptions, various classes of flows on basic sets
satisfying these are described in [8,9] (see also the references there).

Let W;O(x) and W;’U (x) be the strong stable and unstable manifolds of size €p through x € A. It follows from the
hyperbolicity of A that if €g > 0 is sufficiently small, there exists €; > 0 such that if x,y € A and d(x, y) < €1, then
Wgo (x) and <p[,€0,60](wgo (¥)) intersect at exactly one point [x, y] € A. That is, there exists a unique t € [—¢€g, €g] such that
o ([x, y]) € wgo (y). Setting A(x, y) =t defines the so-called temporal distance function. For x, y € A with d(x, y) < €1, define
7y (x) =[x, y]. Notice that T is constant on each stable leaf WIS?;-(X) = Wéo (x) N R;.

The following local non-integrability condition for ¢; and A was introduced in [8].

LNIC. There exist zo € A, €9 > 0 and 6y > 0 such that for any € € (0,¢g], any Z€ AN W¥(z0) and any tangent vector
ne€EY(2) to A at z with ||n|| =1 there exist ze ANWZ(2), y1,¥2 € ANWZE(2) with y1 # ¥2, § >0 and €’ > 0 such that

|A(expy (v), T3, (2)) — A(expy (v), 3, (2))| = 8]Vl

for all ze W, (2) N A and v € E¥(z; €') with expj(v) € A and (”z—”, nz) = 6o, where 5, is the parallel translate of 1 along
the geodesic in W¢ (z0) from Z to z.

Set

Br(x.€)={y e W) N A: d(p(x). r(y)) <€.0<<TH

Following [8], we will say that ¢; has a regular distortion along unstable manifolds over the basic set A if there exists a
constant €y > 0 with the following properties:

(R1) For any 0 < § < € < €g there exists a constant R = R(8, €) > 0 such that diam(A N BY.(z, €)) < Rdiam(A N B (z, 8)) for
any ze€ A and any T > 0.

(R2) For any € € (0, €] and any p € (0, 1) there exists § € (0, €] such that for any z€ A and any T > 0 we have diam(A N
BY(z,8)) < pdiam(A N By (z, €)).

2. Ruelle transfer operator

Given a Markov family R as in Section 1, denote by R the core of R, i.e. the set of those x € R such that P™M(x) € Into(R)
for all m € Z. 1t is well-known (see [1]) that R is a residual subset of R and has full measure with respect to any Gibbs
measure on R. The set U = U N R has similar properties. In general 7 is not continuous on U, however, under the standing
assumption (A), T is essentially Lipschitz on U in the sense that there exists a constant L > 0 such that if x, y € U; 00‘1(Uj)
for some i, j, then |t(x) — 7(y)| < Ld(x, y). In a similar way one defines essentially Lipschitz functions on R. Let Prp(h) be
the topological pressure of a continuous function h on R with respect to the map P on R (see e.g. [4]).
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Let F, G :—> R be Hélder continuous functions, and let @ (x) = FT®(x) and ¥ (x) = G*® (x) (x € R). It is easy to check
that ¢"(x) = GT" @ (x) for all x € R. It follows from the Large Deviation Theorem in [3] that if mg is not the measure of
maximal entropy for P, then there exists a real-analytic function J : Int(Zy) —> [0, 00) such that J(p) =0 iff p = fR ¥ dmg
for which (2) holds. More precisely, we have

—J(p) = inf{Prp(® 4 q¥) — Prp(®) — qp: q € R}. (7)

Let B(U) be the space of bounded functions g : U — C with its standard norm [gllcc = sup,.; 18(X)|. Given a function g
B(U), the Ruelle transfer operator Ly : B(ﬁ) — B(O) is defined by (Lgh)(u) = Za(v)zu eSMh(v). If g e B(U) is essentially
Lipschitz on U, then Lg preserves the space clir(0) of Lipschitz functions g : U —> C. Let Lip(g) be the Lipschitz constant
of g.

Given a Lipschitz real-valued function f on U, set f = f — P¥, where P = Py € R is the unique number such that
the topological pressure Prq(i) of f with respect to o is zero (cf. e.g. [4]). For a,b € R, consider the Ruelle transfer operator
‘Cf—(a+ib)111 : CHP(U) — CUP(U). We will say that the Ruelle transfer operators related to ¥ and the function f on U are eventually
contracting if for every € > 0 there exist constants 0 < p <1, ap > 0 and C > 0 such that if a,b € R satisfy |a|] < ao and
|b| > 1/ag, then for every integer m > 0 and every h € CHP(U) we have

m m €
Hﬁf—(Pf-f-a-&-ib)lI/h”Lip,b < CoT bl IlILip.b,
where the norm ||.||ip,p 0N clir(() is defined by [IhllLip,s = lhllec + U}’T(Ih). This implies in particular that the spectral radius

of £f,(pf+a+ib)g, on CHP(J) does not exceed p.
The following theorem is one of the main ingredients in the proof of Theorem 1:

Theo;‘em 2. Under the standing assumptions, let ¥ (x) = GT™ (x) (x € R). Then there exists a constant jLo > 0 such that if G > 0
and % < Mo, then for any Hélder continuous real-valued function f on U the Ruelle transfer operators related to ¥ and f are
eventually contracting.

Consider a sequence {&;}nen, 8n > 0, 8; — 0, such that (5) holds and let €, = né,. Fix an arbitrary p € Int(Zy) and set
W, =¥ — p. As in [6], it is enough to prove a modified result concerning a sequence of the form p(n) = f;, Xn(llfl'}(x)) due,

where x € C’(j(R :R) is a fixed cut-off function and yp(x) = X(en‘lx) for x e R.
Proposition 3. Under the assumptions of Theorem 2, we have limy,_ o % log p(n) = —J(p) — .
Theorem 1 follows immediately from Proposition 3 as shown in [6].

3. Idea of the proof of Theorem 2

Define the temporal ¥ -function Ay by
AX,y)

Ay (x,y) = / G(ee(Ix, y1)) dt
0

for x,y € A, d(x, y) < €7. Just like A, this function is constant on stable leaves with respect to the first variable and constant
on unstable leaves with respect to the second. ~

Given a Lipschitz real-valued function f on U, let again f = f — P¥, where P = Py. To prove Theorem 2 we apply the
arguments from Sections 3 and 5 in [8] and a modification of the arguments in Section 4 there. The main step is to prove
the analogue of Lemma 4.2 in [8] with the function t replaced by V.

Following Section 4 in [8], fix an arbitrary point zo € A and constants ¢y > 0 and 6y € (0, 1) with the properties described
in LNIC. Assume that zp € Int4(Up), Uy C AN W;‘O (20) and S1 C AN W (20).

Next, fix a C! parametrization r(s) = expg0 (s), s € V), of a small neighborhood Wy of zg in Wé‘o (z9) such that V(/) is a
convex compact neighborhood of 0 in E*(zp). Then r(0) = zg and 3%r(s)|$:0 =e;foralli=1,...,n. Set Uy=WoN A, and
let 0 <0 <1.

Following [8], for a cylinder C C Uj and a unit vector £ € E¥(zp) we will say that a separation by a £-plane occurs in C if

there exist u, v € C with d(u, v) > 1 diam(C) such that (%, £) > 0;.
Let S¢ be the family of all cylinders C contained in Uj such that a separation by a &-plane occurs in C. Given an open

subset V of Uj which is a finite union of open cylinders and § > 0, let C1,...,Cp (p = p(8) > 1) be the family of maximal
closed cylinders in V with diam(Cj) < 8. For any unit vector & € E*(zp) set Mg)(V) =U{Cj: CjeS:, 1< j<pl.
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Given a sequence of unit vectors £1,&,...,&j, € EY(z0), set By={n € s—1: (n, &) >0y} foreach £=1,..., jo. ForteR

and s € E¥(zp) set I,g(s) = w, t#0.
The main aim is to prove the following analogue of Lemma 4.2 in [8]:

Lemma 4. There exist integers 1 <nq < Ng and £o > 1, a sequence of unit vectors 01,12, ..., ¢, € E¥(z0) and a non-empty open
subset Ug of Uy which is a finite union of open cylinders of length ny such that setting U = o™ (Uo) we have:

(a) For any integer N > Ny there exist Lipschitz maps vﬁz), vgl) :U—UM{=1,...,£p)such thataN(vl@(x)) =xforallxel
and vfe) U) is a finite ui}ion of open cylinders of length N (i=1,2;£=1,2,..., Eo);
There exists a constant 6 > 0 such that forall £ =1,...,¢p,s €1 (Up), 0 < < § an € By so that s + er—"(Upn A
(b) Th i 8 > 0 such that forall £ =1 L T(Ug), 0 < |h| <8 and n h hn 1 )
we have

[N (V0 (FO)) — oM (VP (FO))) ) > Ad/4.

(c) For any open cylinder V in Ug there exists ' > 0 such that V C M;B)(V) U---u Mffl (V) forall § € (0,8'].

1 4

Using the objects constructed in Lemma 4.4 in [8] and essentially repeating some of the arguments from the proof of
this lemma, one gets an analogue of the lemma, where the function t is replaced by ¥, from which Lemma 4 above is
derived using again arguments similar to these in Section 4 in [8].

Proof of Theorem 2. Once Lemma 3 is proved, for Lipschitz functions f the rest of the argument is just a repetition of
Section 5 in [8] without any changes. For Holder continuous f one just needs to combine this with the approximation
procedure in [2]. Since ¥ is Lipschitz, the approximation procedure can be carried out in the same way as in [2]. O

The detailed proofs of our results are contained in [5].
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