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In this Note, we give a new proof of a pointwise asymptotic expansion in powers of h of the
derivative of the spectral shift function corresponding to the pair (−h2� + V (x),−h2�),
near a non-trapping energy. Here the potential V is smooth, real-valued and O(|x|−δ) for
some δ > n, and h > 0 is a small parameter. This result is originally due to D. Robert and
H. Tamura and their proof is based on the construction of a long-time parametrix for the
time-dependent Schrödinger equation. Here we give a time-independent method.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, on donne une nouvelle preuve pour l’asymptotique forte en puissances
de h de la dérivée de la fonction de décalage spectral associée au couple (−h2� +
V (x),−h2�), près d’une énergie non captive. Ici le potentiel V est lisse, à valeurs réelles
et O(|x|−δ) pour un certain δ > n, et h > 0 est un petit paramètre. Ce résultat est due
à D. Robert et H. Tamura et leur preuve est basée sur la construction de paramétix pour
des temps grands pour l’équation de Schrödinger dépendant du temps. Ici on donne une
méthode indépendante du temps.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the semiclassical Schrödinger operator on R
n , n � 1, P1 := −h2� + V (x), where V is smooth, real-valued

potential and satisfies the following assumption:

(A1). There exist δ > n s.t. for all α ∈ N
n there exist Cα > 0: |∂α

x V (x)| � Cα〈x〉−δ−|α| , for all x ∈ R
n .

Here 〈x〉 = (1 + |x|2) 1
2 . We denote the semiclassical free Laplacian by P0 := −h2�.

The operators P0, P1 are self-adjoint on L2(Rn) with domain H2(Rn). Under the assumption (A1), the operator [ f (P1)−
f (P0)] belongs to the trace class for all f ∈ C∞

0 (R). Following the general setup we define the spectral shift function, SSF,
ξh(λ) := ξ(λ; P1, P0) related to the pair (P1, P0) by 〈ξ ′

h(·), f (·)〉 := − tr( f (P1) − f (P0)), f ∈ C∞
0 (R). By this formula ξh is

defined modulo a constant but for the analysis of the derivative ξ ′
h(λ) this is not important. The SSF may be considered as

a generalization of eigenvalues counting function. Background information on the SSF theory can be found in [7] and the
references given there.

E-mail addresses: mouez.dimassi@math.u-bordeaux1.fr (M. Dimassi), zerzeri@math.univ-paris13.fr (M. Zerzeri).
1631-073X/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crma.2012.03.016

http://dx.doi.org/10.1016/j.crma.2012.03.016
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:mouez.dimassi@math.u-bordeaux1.fr
mailto:zerzeri@math.univ-paris13.fr
http://dx.doi.org/10.1016/j.crma.2012.03.016


376 M. Dimassi, M. Zerzeri / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 375–378
We denote by p1(x, ζ ) = ζ 2 + V (x), (x, ζ ) ∈ R
2n , the classical Hamiltonian associated to the operator P1. The vector

field H p1 = ∂ζ p1 · ∂x − ∂x p1 · ∂ζ = 2ζ · ∂x − ∇V (x) · ∂ζ , is the Hamiltonian vector field associated to p1. Integral curves
t �→ exp t H p1 (x, ζ ) of H p1 are called classical trajectories or bicharacteristic curves, and p1 is constant along such curves.
Let E0 > 0. We assume that:

(A2). The energy E0 is non-trapping for the classical Hamiltonian p1, i.e. for all compact K ⊂ p−1
1 {E0} there exists T K > 0

such that: (x, ζ ) ∈ K �⇒ exp t H p1(x, ζ ) ∈ R
2n \ K , ∀t > T K .

Notice that the non-trapping condition holds on [E0 − ε, E0 + ε] for ε > 0 small enough.
Under the assumption (A2) a complete asymptotic expansion in powers of h of ξ ′

h(λ) has been obtained (see [8]). More
precisely, we have the following well-known result (see [8, Theorem 0.1]):

Theorem 1.1 (Pointwise asymptotic). Assume (A1), (A2). For ε > 0 sufficiently small, the following asymptotic expansion holds:
ζ ′

h(λ) ∼ h−n ∑
j�0 γ j(λ)h j as h ↘ 0, uniformly for λ ∈ [E0 − ε, E0 + ε]. The coefficients (γ j(·)) j�0 are smooth function of

λ ∈ [E0 − ε, E0 + ε]. In particular,

γ0(λ) = n · vol({x ∈R
n; |x| < 1})

2(2π)n

∫
R

n
x

[
λ

n
2 −1
+ − (

λ − V (x)
) n

2 −1
+

]
dx.

Here λ+ = max(λ,0). Furthermore, this expansion has derivate in λ to any order.

The proof of this theorem given by Robert and Tamura is based on the construction of a long-time parametrix for the
time-dependent Schrödinger equation known as Isozaki and Kitada’s constructions. The aim of this Note is to give a time-
independent approach to prove this result. More precisely, our proof is based on the absorption limiting principle and the
functional calculus due to Helffer–Sjöstrand. This stationary method is very useful when we treat situations where the
spectral parameter is implicit, and when there is no really natural associated evolution equation, and we get a flexible tool
which can be combined with Grushin reductions and effective Hamiltonians. For example in the case of SSF for perturbed
periodic Schrödinger operators (see [3]) and also SSF for Stark Schrödinger operator (see [1]).

In this Note, we only give the proof in the case where V ∈ C∞
0 (Rn,R). For the general case see Remark 3.1.

2. Preliminaries

The operators P0, P1 are bounded from below then we may choose λ0 ∈ R− away from the spectrum of P1. From the
assumption (A1) the operator [(P j − λ0)

−m(z − P j)
−1]1

0 is trace class for m > n
2 . Here we use the notation [a j]1

0 = a1 − a0.

We introduce the following function: σ(z) = (z − λ0)
m tr[(P j − λ0)

−m(z − P j)
−1]1

0, z ∈C \R. Let f ∈ C∞
0 (R) and let f̃ be an

almost analytic extension of f , i.e. f̃ ∈ C∞
0 (C), f̃ |R = f and ∂ f̃ (z) = O(|�(z)|N ) for all N ∈ N, where ∂ = ∂

∂z . The functional
calculus due to Helffer–Sjöstrand (see for instance [2, Chapter 8]) yields〈

ξ ′
h, f

〉 = 1

π

∫
∂ f̃ (z)σ (z) L(dz), (1)

where L(dz) := dx dy denotes the Lebesgue measure on C, z = x + iy, (x, y) ∈ R
2. Here we used the fact that ∂[ f̃ (·)(· −

λ0)
m](z) = (z − λ0)

m∂ f̃ (z). Thus,〈
ξ ′

h, f
〉 = lim

ε↘0

[
1

π

∫
{�(z)>0}

∂ f̃ (z)σ (z + iε) L(dz) + 1

π

∫
{�(z)<0}

∂ f̃ (z)σ (z − iε) L(dz)

]
.

Using that σ(z+ iε) (respectively σ(z− iε)) is holomorphic on {z ∈C,�(z) > 0} (respectively {z ∈C, �(z) < 0}) and applying
Green formula, we obtain the following:

Proposition 2.1. Assume (A1), we have ξ ′
h(λ) = 1

π �σ(λ + i0) in D′ . More precisely, for all f ∈ C∞
0 (R), we have 〈ξ ′

h, f 〉 =
limε↘0

1
π

∫
R

f (λ)�σ(λ + iε)dλ, where the limit is taken in the sense of distributions. Here �σ denotes the imaginary part of σ .

From now on fix E0 > 0 and ε > 0 small enough such that the interval [E0 − ε, E0 + ε](⊂]0,+∞[) is contained in the
non-trapping energy region. Then by Mourre’s commutator method, we have the following (see [5] and also [4]):

Proposition 2.2. For p ∈ N
∗ . There exists h0(p) > 0 small enough such that for all 0 < h < h0(p), we have supz∈[E0−ε,E0+ε] ‖〈x〉−α ×

((z ± i0) − P j)
−p〈x〉−α‖L2(Rn) =O(h−p), for all α > p − 1

2 .

Using the previous absorption limiting principle and the cyclicity of the trace we prove the following:
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Proposition 2.3. Assume (A1), (A2) and let N ∈ N. There exist h0(N) > 0 small enough such that for all 0 < h < h0(N) the following
estimate holds:

ζ
(N)

h (λ) = O
(
h−n−N)

, uniformly for λ ∈ [E0 − ε, E0 + ε]. (2)

We finish this section by stating the following proposition which is the main step of the proof of Theorem 1.1. Let
θ ∈ C∞

0 (R). We denote by [F−1
h θ] the h-Fourier inverse of the function θ given by[

F−1
h θ

]
(λ) = 1

2πh

∫
R

e
i
h tλθ(t)dt.

Proposition 2.4. Let θ ∈ C∞
0 (] 1

2 ,1[;R), ρ > 0 and k � 0. We have:〈
ξ ′

h(·),
[
F−1

h θμ

]
(λ − ·) f (·)〉 = O

(
h∞)

, uniformly for λ ∈ [E0 − ε, E0 + ε].
Here θμ(t) = θ( t

μ) and μ = μ(h) = ρh−k.

Remark that we obtain the same result for θ ∈ C∞
0 (] − 1,− 1

2 [;R).

Outline of the proof of Proposition 2.4. Let θ ∈ C∞
0 (] 1

2 ,1[;R), μ = μ(h) = ρh−k with ρ > 0 and k � 0. Let λ ∈ [E0 − ε,

E0 + ε].
Case k > 0: A simple computation gives: for any integer N ,[

F−1
h θμ

]
(λ) = (−i)Nρ−N+1h(1+k)N−k dN

dλN

[(
F−1

h gN
)
(μ · λ)

]
, where gN(t) = θ(t)

tN
∈ C∞

0 .

Integrating by parts the quantity 〈ξ ′
h(·), [F−1

h θμ](λ− ·) f (·)〉, and using (2) and the last equality, we obtain, for all integer N ,〈
ξ ′

h(·),
[
F−1

h θμ

]
(λ − ·) f (·)〉 = O

(
h(N−1)k−n), (3)

which yields the proposition, since N is arbitrary and k is positive.
Case k = 0: This case is more involved. From now on we fix μ > 0 independent on h. Let ψ(t) ∈ C∞

0 (R; [0,1]) be equal
to 1 for |t| � 1 and be equal to 0 for |t| � 2. Let M > 0 be a sufficiently large constant. For z ∈ C, we put ψa(h)(z) = ψ( �z

a(h)
)

with a(h) = M
μ h ln( 1

h ). Here �z is the imaginary part of z. Recalling that if f̃ is an almost analytic extension of f ∈ C∞
0 then

∂ f̃ (z) =O(|�(z)|∞). This property and the construction of ψa(h) we deduce that

∂( f̃ ψa(h))(z) = a(h)

(
1[−2,−1]

( �z

a(h)

)
+ 1[1,2]

( �z

a(h)

))
+O

(
ψa(h)(z)|�z|∞)

. (4)

Since ψa(h)(z) = 1 for z real, it follows from (1) that:〈
ξ ′

h(·),
[
F−1

h θμ

]
(λ − ·) f (·)〉 = 1

π

∫
C

∂( f̃ ψa(h))(z)
[
F−1

h θμ

]
(λ − z)σ (z) L(dz) = I− + I+, (5)

where I± = 1
π

∫
{z∈C; ±�z>0} ∂( f̃ ψa(h))(z)[F−1

h θμ](λ − z)σ (z) L(dz).

The Paley–Wiener estimates yields:
[
F−1

h θμ

]
(λ − z) =

{
O(

μ
h e

μ�z
h ) for �z > 0,

O(
μ
h e

μ�z
2h ) for �z < 0.

(6)

In the domain �z < 0, the corresponding estimations in (4) and (6) imply

I− = O
(
h

M
2 −1−n), uniformly for λ ∈ [E0 − ε, E0 + ε]. (7)

It remains to prove that there exist L = L(M) large enough such that I+ = O(hL), uniformly for λ ∈ [E0 − ε, E0 + ε]. We
use a complex scaling which allows us to control I+ by the values of the integrant in the lower complex half-plane. This
idea is used among others to determine the resonance free region (see [9] and also [6]).

Let F :Rn → R
n be a smooth vector field, such that F (x) = 0 in a neighborhood of supp(V ) and F (x) = x for |x| large

enough. For ν ∈ R small enough, we denote Uν : L2(Rn) → L2(Rn) the unitary operator defined by Uνϕ(x) = |det(1 +
ν dF (x))| 1

2 ϕ(x + ν F (x)), for ϕ ∈ C∞
0 (Rn). Then the operator P̃ j = Uν P j(Uν)−1 ( j = 0,1) is a differential operator with

analytic coefficients with respect to ν , and can be analytically continued to small enough complex values of ν . For ν ∈ C

such that |ν| small enough, we set σν(z) = (z − λ0)
m tr[( P̃ j − λ0)

−m(z − P̃ j)
−1]1, �z > 0. Note that σ0(z) = σ(z).
0
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Since Uν is unitary for ν real and small enough, it follows that σν(z) = σ(z) for �z > 0 and ν real and small enough.
On the other hand, for �z > a(h) the function ν �→ σν(z) is analytic near ν = 0. Thus, for �z > a(h) the function ν �→ σν(z)
is a constant near ν = 0 and equal to σ0(z) = σ(z). From now on we take ν0 = is0 with s0 ∼ a(h) fixed. Next, using
the assumption (A2) and repeating the arguments in [9, Section 4] (see also [6]), we construct an escape function G ∈
C∞

0 (R2n;R) such that (z − P̃ j,a(h))
−1 := (z − e

a(h)
h G w (x,hDx) P̃ je

− a(h)
h G w (x,hDx))−1 exists, holomorphic and ‖(z − P̃ j,a(h))

−1‖ =
O(a(h)−1), for �z > −3a(h) and �z ∈ [E0 − ε, E0 + ε]. We set

σ̃a(h)(z) = (z − λ0)
m tr

[
( P̃ j,a(h) − λ0)

−m(z − P̃ j,a(h))
−1]1

0, �z > −3a(h). (8)

Applying the cyclicity of the trace and using the above construction, we deduce that

σ̃a(h)(z) = σ(z), �z > a(h). (9)

Now we pass to the analysis of the integral I+ . Using (6), (8), (9) and the fact that the function z �→ σ̃a(h)(z) is holomorphic
in a neighborhood of supp( f̃ ψa(h)), we get

I+ =
∫

{�z>a(h)}
∂( f̃ ψa(h))(z)

[
F−1

h θμ

]
(λ − z)σ (z) L(dz) +O

(
h∞)

=
∫

{�z>a(h)}
∂( f̃ ψa(h))(z)

[
F−1

h θμ

]
(λ − z)σ̃a(h)(z) L(dz) +O

(
h∞)

=
∫

{�z<−a(h)}
∂( f̃ ψa(h))(z)

[
F−1

h θμ

]
(λ − z)σ̃a(h)(z) L(dz) +O

(
h∞)

. (10)

In the domain �z < −a(h), we repeat the arguments used to prove (7) and conclude that the first term of the right-hand

side of (10) is O(h
M
2 −1−n), which together with (7) ends the proof of Proposition 2.4. We recall that M > 0 is arbitrary. �

3. Proof of Theorem 1.1

Let θ ∈ C∞
0 (] − 1

C , 1
C [;R) be equal to 1 near 0 and C is a large constant. Fix μ = h−k which k ∈N arbitrary large, and let

f ∈ C∞
0 (]E0 − ε, E0 + ε[;R), ≡ 1 near E0. According to Proposition 2.4, we have:〈

ξ ′
h(·),

[
F−1

h θ
]
(λ − ·) f (·)〉 = 〈

ξ ′
h(·),

[
F−1

h θμ

]
(λ − ·) f (·)〉 +O

(
h∞)

. (11)

In fact we can represent the function (θ − θμ) as a finite sum (∼ O(h−k)) of functions of the type appearing in
Proposition 2.4. As in (3), integrating by parts the first term of the right-hand side of (11) and using (2), we obtain
〈ξ ′

h(·), [F−1
h θμ](λ − ·) f (·)〉 = ξ ′

h(λ) +O(hk−n−1), which together with (11) yield
ξ ′

h(λ) = 〈
ξ ′

h(·),
[
F−1

h θ
]
(λ − ·) f (·)〉 +O

(
hk−n−1). (12)

On the other hand, it is well known that the first term of the right-hand side of (12) has a complete asymptotic expansion
in powers of h (see [2, Chapter 12] for a time independent method). This ends the proof of Theorem 1.1.

Remark 3.1 (Sketch of the proof in the general case). The main change is the proof of Proposition 2.4 in the case where k = 0.
For that, we proceed as follows. Let E0 > 0 and μ = ρ > 0 be fixed as in Proposition 2.4. We write V = V comp + V∞ , where
V comp ∈ C∞

0 (Rn,R) and V∞ ∈ C∞ , satisfying:

ρ · sup
x∈Rn

∣∣∂α
x V∞(x)

∣∣ � 1, ∀α ∈N
n such that |α| � 2n + 1. (13)

For V comp the result follows from the Proposition 2.4. For V∞ , we use the same arguments as in the proof of [2, p. 141,
Proposition 12.4]. Note that, the proof of Proposition 12.4 in [2] is time independent, and holds under the assumption (13)
and for θ ∈ C∞

0 (] 1
2 ,1[;R), θμ(t) = θ( t

μ) with μ = ρ > 0.
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