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Let G be a connected reductive real Lie group, and H a compact connected subgroup.
Let M be a coadjoint admissible orbit of G and let Π be one of the unitary irreducible
representations of G attached to M by Harish-Chandra. Using the character formula for Π ,
we give a geometric formula for the multiplicities of the restriction of Π to H , when the
restriction map p : M → h∗ is proper. In particular, this gives an alternate proof of a result
of Paradan.
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r é s u m é

Soit G un groupe de Lie réel réductif connexe, et H un sous-groupe compact connexe.
Soit M une orbite coadjointe admissible de G et soit Π une des représentations unitaires
irréductibles associées à M par Harish-Chandra. Grâce aux formules de caractère pour Π ,
nous donnons une formule géométrique pour les multiplicités de la restriction de Π à H
lorsque l’application de restriction p : M → h∗ est propre. En particulier, ceci donne une
autre démonstration d’un résultat de Paradan.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

When M is a compact pre-quantizable Hamiltonian manifold for the action of a compact connected Lie group H with
moment map p : M → h∗ , Guillemin and Sternberg defined a quantization of M , which is a virtual representation of H .
They proposed formulae for the multiplicities in terms of the reduced “manifolds” p−1(v)/H(v). These formulae have been
proved in [7], and in the close setting of quantization with ρ-correction (also called Spinc-quantization) in [9]. In this Note
we consider only quantization with ρ-correction.

When M is not compact, it is not clear how to define a quantization of M . In the case where M is a coadjoint admissible
orbit, closed and of maximal dimension, of a real connected reductive Lie group G , the representations Π associated to
M by Harish-Chandra are the natural candidates for the quantization of M . When H is the maximal compact subgroup
of G , Paradan [8] has shown that the motto “quantization commutes with reduction” still holds for these non-compact
Hamiltonian manifolds. We give another proof using character formulae. It holds for any connected compact subgroup H ,
provided the moment map p : M → h∗ is proper. However, our proof uses a special feature of these manifolds M: their
Â-genus is trivial. So it does not extend to representations associated to coadjoint orbits of G which are not of maximal
dimension.
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2. Box splines and Dahmen–Micchelli deconvolution

Let V be a finite dimensional real vector space, Λ ⊂ V a lattice, and dv the associated Lebesgue measure. For v ∈ V , we
denote by δv the δ measure at v , by ∂v the differentiation in the direction v . Let Φ = [α1,α2, . . . ,αN ] be a list of elements
in Λ and let ρΦ = 1

2

∑
α∈Φ α. The centered box spline Bc(Φ) is the measure on V such that, for a continuous function F

on V ,

〈
Bc(Φ), F

〉 =
1
2∫

− 1
2

· · ·
1
2∫

− 1
2

F

(
N∑

i=1

tiαi

)
dt1 · · · dtN .

The Fourier transform B̂c(Φ)(x) is the function
∏

α∈Φ
ei〈α,x〉/2−e−i〈α,x〉/2

i〈α,x〉 .
Define a series of differential operators on V by

Â(Φ) =
∏
α∈Φ

∂α

e
1
2 ∂α − e− 1

2 ∂α

= 1 − 1

24

∑
α

(∂α)2 + · · · .

We assume now that Φ generates V . A vector ε ∈ V is called generic if ε does not lie on any hyperplane U spanned by
elements of Φ .

We choose some κ ∈ V . Usually, the choice of κ is clear from the context, and we do not show the dependence on κ .
A point v ∈ V is called Φ-regular if v does not lie on any affine hyperplane ρΦ + κ + λ + U where λ ∈ Λ. A connected
component c of the set V reg of Φ-regular elements is called an alcove.

A piecewise polynomial function h on V is a function defined on the open set V reg and such that, for any alcove c,
there exists a polynomial function hc which coincide with h on c. If D is a differential operator (or a series of differential
operators) with constant coefficients, we can define the piecewise differentiation h �→ Dh, by applying D on each alcove
to the function h. Let ε generic. We define a function limε h on V by limε h(v) = hc(v), where c is the alcove such that
v + tε ∈ c for small t > 0. We can also translate a piecewise polynomial function by an element ξ of V (this will change κ
to κ + ξ ).

Consider the box spline Bc(Φ). For each alcove (here κ = 0) c, there exists a polynomial function bc on V such that the
measure Bc(Φ) coincide with bc(v)dv on c. Thus the collection of functions bc define a piecewise polynomial function b.

Denote by P = κ +Λ the translate of Λ, and C(P ) the space of complex valued functions on P . If m ∈ C(P ), the function

b(m)(v) =
∑
λ∈P

m(λ)b(v − λ)

is a piecewise polynomial function such that

b(m)dv =
∑
λ∈P

m(λ) δλ ∗ Bc(Φ).

Recall that the list Φ is called unimodular if any basis of V contained in Φ is a basis of the lattice Λ.

Theorem 2.1. (See [2].) Let m ∈ C(P ) and let ν ∈ P . If Φ is unimodular, then, for any ε generic, we have

m(ν) = lim
ε

(
Â(Φ)b(m)

)
(ν).

However, we need to consider the general case, where Φ is not necessarily unimodular. We consider Λ as the group of
characters of a torus T , and use the notation sλ for the value of λ ∈ Λ at s ∈ T . Let V (Φ) be the set of s ∈ T such that the
list Φs = [α, sα = 1] generates V (it is called the vertex set).

Consider a vertex s ∈ V (Φ) and the convolution product

Bc(s,Φ) =
( ∏

α∈Φ\Φs

δα/2 − s−αδ−α/2

1 − s−α

)
∗ Bc(Φs). (1)

If m ∈ C(P ), Theorem 2.2 below (basically due to Dahmen–Micchelli) implies that we can recover the value of m at a
point ν ∈ P from the knowledge, in a neighborhood of ν , of the locally polynomial measures (for all s ∈ V (Φ))

b(s,m, κ)dv =
(∑

ν∈P

sν−κm(ν)δν

)
∗ Bc(s,Φ). (2)

Define the series of differential operators
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E(s,Φ) =
∏

α∈Φ\Φs

1 − s−α

e∂−α/2 − s−αe∂α/2
= 1 + 1

2

∑
α∈Φ\Φs

1 + s−α

1 − s−α
∂α + · · ·

and

Â(s,Φ) = E(s,Φ) Â(Φs).

Theorem 2.2. (See [3].) Let m ∈ C(P ) and let ν ∈ P . Then, for any ε generic, we have

m(ν) =
∑

s∈V(Φ)

sκ−ν lim
ε

(
Â(s,Φ)b(s,m, κ)

)
(ν).

3. Kirillov’s formula

Let G be a connected reductive real Lie group with Lie algebra g. The function

jg(X) = detg

(
ead X/2 − e−ad X/2

ad X

)

admits a square root j1/2
g (X), an analytic function on g with j1/2

g (0) = 1. Let s be a semi-simple element of G , and g(s) its

centralizer. The function detg/g(s)(
1−sead X

1−s ) admits a square root D1/2(s, X), an analytic function on g(s) with D1/2(s,0) = 1.
Let H be a compact connected group, with Lie algebra h. Let T be a Cartan subgroup of H with Lie algebra t. We will

apply the results of the previous paragraph to the vector space V = t∗ equipped with the lattice Λ ⊂ t∗ of weights of T
(thus eiλ is a character of T ). Let W be the Weyl group of (H, T ). Choose a positive system �+ ⊂ t∗ for the non-zero
weights of the adjoint action of T in hC . For X ∈ t,

j1/2
h

(X) =
∏

α∈�+

ei〈α,X〉/2 − e−i〈α,X〉/2

i〈α, X〉 .

For κ , we will use ρH = ρ�+ . Let t∗+ be the open Weyl chamber. Thus t∗+ intersect every orbit of H in h∗ of maximal
dimension in one point. Consider the set Ph = (ρH + Λ) ⊂ t∗ and P+

h
= (ρH + Λ) ∩ t∗+ . A function mult on P+

h
will be

extended to a W -anti-invariant function m on Ph .
The set P+

h
is in one-to-one correspondence μ �→ Π H (μ) with the dual Ĥ of H . The identity

TrΠ H (μ)(exp X) =
∑

w∈W

ε(w)e〈iwμ,X〉∏
α∈�+ ei〈α,X〉/2 − e−i〈α,X〉/2

holds on t. This is the Atiyah–Bott fixed-point formula for the index of a twisted Dirac operator on Hμ, so that Π H (μ) is
the quantization Q (Hμ) of the symplectic manifold Hμ.

Let p : M → h∗ be the moment map of a connected H-Hamiltonian manifold M . Let βM be the Liouville measure. The
slice S of M is the locally closed subset p−1(t∗+) of M . It is a symplectic submanifold of M with associated Liouville measure
βS . If p is proper, the restriction p0 of p to S defines a proper map S → t∗+ . We extend the push-forward measure p0∗(βS )

on t∗+ to a W -anti-invariant signed measure on t∗ denoted by DH(M, p) (the Duistermaat–Heckman measure). If S is non-
empty (that is, if p(M) contains an H-orbit of maximal dimension), the support of DH(M, p) is equal to p(M) ∩ t∗ . Suppose
moreover that there exist regular values v ∈ t∗+ of p0. At such v , the reduced space Mv = p−1(v)/H(v) is an orbifold with
symplectic form denoted by Ωv , and corresponding Liouville measure βMv . By [6], the measure DH(M, p) has a polynomial
density with respect to dv in a neighborhood of v , and the value at v is the symplectic volume

∫
Mv

eΩv/2π = ∫
Mv

βMv .
Some unitary irreducible representations of G can similarly be associated to closed admissible orbits of maximal di-

mension of the coadjoint representation of G . Recall Harish-Chandra parametrization. To simplify, we assume G linear. Let
f0 ∈ g∗ such that g( f0) (its centralizer in g) is a Cartan subalgebra of g. Denote by G̃( f0) the metaplectic two fold cover of
the stabilizer G( f0) of f0. Let τ be a character of G̃( f0) such that τ (exp X) = ei〈 f ,X〉 and τ (ε) = −1 if ε ∈ G̃( f0) projects on
1 and ε 
= 1 (if such a character τ exists, f0 is called admissible). As explained in [4], it follows from deep work of many
mathematicians, especially Harish-Chandra, that to this data is associated an irreducible unitary representation ΠG( f0, τ )

of G . We consider it as a quantization Q (M, τ ) of M . If f0 is admissible and G( f0) is connected (as is the case when G( f0)

is compact), the character τ is unique, and we simply write Q (M) for Q (M, τ ).

Irreducible unitary representations of G have a character, which, by Harish-Chandra theory, is a locally L1 function on G .
We denote by Θ(M, τ ) the character of Q (M, τ ). Similarly, the measure βM , considered as a tempered measure on g∗ , has
a Fourier transform which is a locally L1 function on g. Kirillov’s formula (proven in this case by Rossmann [10]) is the
equality of locally L1 functions on g:
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j1/2
g (X) Θ(M, τ )(exp X) =

∫
M

ei〈 f ,X〉 dβM( f ).

We suppose that the connected compact group H is a subgroup of G , and we assume that the projection map p : M → h∗
is proper. It implies that the restriction

Q (M, τ )|H =
∑

μ∈P+
h

mult(μ)Π H (μ)

is a sum of irreducible representations of H with finite multiplicities mult(μ). We associated to mult(μ) an anti-invariant
function m(μ) on Ph , and to the projection p an anti-invariant measure DH(M, p) on t∗ . Let �(g/h) ⊂ t∗ be the list of
weights for the action of T in gC/hC . Choose a sublist Φ so that �(g/h) is the disjoint union of Φ , −Φ and the zero
weights. The subsequent definitions do not depend of this choice. On t, we have

j1/2
g (X) = j1/2

h
(X)

∏
α∈Φ

ei〈α,X〉/2 − e−i〈α,X〉/2

i〈α, X〉 .

We assume (and we can easily restrict to this case) that h does not contain any ideal of g. Then the set Φ generates t∗ .
Kirillov’s formula, written for the characters of Q (M, τ ) and Q (Hμ), implies the equality of measures on t∗:( ∑

ν∈Ph

m(ν)δν

)
∗ Bc(Φ) = DH(M, p).

We write DH(M, p) = d dv , where d is piecewise polynomial. When v ∈ t∗ is regular, we have r(v) = ( Â(Φ)d)(v) =∫
Mv

eΩv/2π Â(Mv ) where Â(Mv ) is the Â-genus of Mv . This follows from expressing the linear variation of Ωv in func-

tion of the curvature of the principal bundle (p0)−1(v)/T [6].
In the (rare) case where the system Φ is unimodular (for example for G the adjoint group of U (p,q), and H the maximal

compact subgroup), the orbifold Mv is smooth. The value r(ν) can be defined at any ν ∈ Ph , by taking a limit of r(ν + tε)

for any ε generic, and coincide with the number Q (Mν) ∈ Z defined as the quantization of the (possibly singular) reduction
Mν [8]. Thus we obtain

Q (M)|H =
∑

ν∈P+
h

∩p(M)

Q (Mν)Q (Hν).

We now consider the general case. Consider a vertex s ∈ T for Φ . Let M(s) be the submanifold of M fixed by s. It may
have several connected components. It is a symplectic submanifold, and we denote by βs its Liouville measure. We can
define the generalized function Θ( f , τ )(sg) where g ∈ G commutes with s. The identity

j1/2
g(s)(X)D1/2(s, X)Θ( f , τ )(s exp X) =

∫
M(s)

ε(s, τ )ei〈 f ,X〉βs (3)

holds as an identity of locally L1-functions on g(s) [1]. Here ε(s, τ ) is a locally constant function on M(s) (defined in [5]).
Recall (1) the measure Bc(s,Φ) on t∗ associated to s. Denote by ps : M(s) → h(s)∗ the restriction of p to M(s). We define

DH(M, s, τ ) as the sum of the measures ε(s, τ )iDH(Mi
s, pi

s), where Mi
s are the connected components of Ms , and ε(s, τ )i

the constant value of ε(s, τ ) on Mi
s . The support of DH(M, s, τ ) is contained in the image p(M) of M for any s. Formula (3)

implies the identity of measures on t∗:( ∑
ν∈Ph

sν−ρH m(ν)δν

)
∗ Bc(s,Φ) = DH(M, s, τ ).

Comparing with Formula (2), we see that we can compute m(ν) from the knowledge, in a neighborhood of ν , of
Duistermaat–Heckman measures DH(M, s, τ ) associated to all vertices s. In particular m(ν) = 0, if ν is not in the interior
p(M)0 of p(M).

More precisely, Theorem 2.2 and the definition of the quantization of (possibly singular) reduced spaces gives us

Q (M, τ )|H =
∑

ν∈P+
h

∩p(M)0

Q (Mν, τ )Q (Hν).
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