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We show that recent work of Ni and Wilking (in preparation) [11] yields the result that
a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The
examples of noncompact Kähler–Ricci shrinkers by Feldman, Ilmanen, and Knopf (2003)
[7] exhibit that this result is sharp. We also prove a similar result for certain noncompact
steady gradient Ricci solitons.
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r é s u m é

Nous montrons que les travaux récents de Ni et Wilking (in preparation) [11] donne le
résultat d’un non plate soliton contractant de type gradient non compact a tout au plus sa
courbure scalaire avec décroissance quadratique. Les exemples de solitons de Kähler–Ricci
contractant de type non compact par Feldman, Ilmanen, et Knopf (2003) [7] montre que ce
résultat est optimales. Nous prouvons aussi un résultat similaire pour certains solitons de
Ricci stable de type gradient non compact.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let (Mn, g) be a complete Riemannian manifold, let f be a smooth function on M, and let ε ∈ R. We say that the
quadruple (M, g, f , ε) is a complete gradient Ricci soliton if Rij + ∇i∇ j f + ε

2 gij = 0. It is called shrinking (Ricci shrinker for
short) if ε < 0, steady if ε = 0, and expanding if ε > 0. Ricci solitons are self-similar solutions of the Ricci flow and often
arise as blow-up limits of singular solutions of Ricci flow (see [9]). It is well known that R +|∇ f |2 + ε f is constant on Ricci
solitons (see [9]).

It was proved by Bing-Long Chen [4] that R � 0 for Ricci shrinkers. If a Ricci shrinker is not isometric to Euclidean space,
then R > 0 (see Stefano Pigola, Michele Rimoldi, and Alberto Setti [13] and Shijin Zhang [15]). Recently, Lei Ni and Burkhard
Wilking [11] proved that on any noncompact nonflat Ricci shrinker and for any δ > 0, there exists a constant Cδ > 0 such
that R(x) � Cδd(x, O )−2−δ wherever d(x, O ) is sufficiently large. The purpose of this note is to observe the following version
of their result and a similar result for certain noncompact steady gradient Ricci solitons.

Theorem 1. Let (Mn, g, f ,−1) be a complete noncompact nonflat Ricci shrinker with the potential function f normalized in the sense
that R + |∇ f |2 − f = 0. Then for any given point O ∈ M there exists a constant C0 > 0 such that R(x)d(x, O )2 � C−1

0 wherever
d(x, O ) � C0 . Consequently, the asymptotic scalar curvature ratio of g is positive.
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Proof. Recall that Huai-Dong Cao and De-Tang Zhou [3] proved that on any complete shrinker there exists a positive con-
stant C1 such that f satisfies the estimate:
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4

[(
d(x, O ) − C1

)
+
]2 � f (x) � 1

4

(
d(x, O ) + 2 f (O )

1
2
)2

, (1)

where c+ � max(c,0) (see also Fu-Quan Fang, Jian-Wen Man, and Zhen-Lei Zhang [6] and, for an improvement, Robert
Haslhofer and Reto Müller [10]). Define the f -Laplacian � f � � − ∇ f · ∇ . We have 0 < R + |∇ f |2 = f = n

2 − � f f . Recall
that (see [5] for example)

� f R = −2|Rc |2 + R. (2)

Note that
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Using (2) and (3), we compute for any c > 0

� f
(

R − cf −1) � R − cf −1 + cf −2
(

n

2
− 2

|∇ f |2
f

)
. (5)

Define φ � R − cf −1 − cnf −2. By (4) we obtain

� f φ � φ − cnf −3
(

f

2
− n

)
− cf −4(2 f + 6n)|∇ f |2. (6)

Choosing c > 0 sufficiently small, we have φ > 0 inside B(O , C1 + 3n), where C1 is as in (1). If infM−B(O ,C1+3n) φ �
−δ < 0, then by (1) there exists ρ > C1 + 3n such that φ > − δ

2 in M − B(O ,ρ). Thus a negative minimum of φ is attained

at some point x0 outside of B(O , C1 + 3n). By the maximum principle, evaluating (6) at x0 yields f (x0)
2 − n � 0. However,

(1) implies that f (x0) � 9n2

4 , a contradiction. We conclude that R � cf −1 + cnf −2 on M. The theorem follows from (1). �
Remark. Mikhail Feldman, Tom Ilmanen, and Dan Knopf [7] constructed complete noncompact Kähler–Ricci shrinkers on
the total spaces of k-th powers of tautological line bundles over the complex projective space CP

n−1 for 0 < k < n. These
examples, which have Euclidean volume growth and quadratic scalar curvature decay, show that Theorem 1 is sharp.

By a similar argument we prove the following result regarding steady gradient Ricci solitons. See [1,2,8,9], and [12] for
some earlier works on the qualitative aspects of steady Ricci solitons.

Theorem 2. Let (Mn, g, f ,0) be a complete steady gradient Ricci soliton with R + |∇ f |2 = 1. If limx→∞ f (x) = −∞ and f � 0,
then R � 1√

n
2 +2

e f .

Proof. Note that on steady gradient Ricci solitons we have � f f = −1, � f R = −2|Rc |2 � − 2
n R2, and � f (e f ) = −R e f . For

c ∈ R,

� f
(

R − ce f ) � −2

n
R2 + cR e f � nc2

8
e2 f .

Using � f (e2 f ) = 2e2 f (1 − 2R), we compute for b ∈ R that

� f
(

R − ce f − be2 f ) �
(

nc2

8
− 2b + 4bR

)
e2 f . (7)

Suppose R − ce f − be2 f is negative somewhere. Then, since R � 0 by [4] and limx→∞ e f (x) = 0 by hypothesis, a negative
minimum of R − ce f − be2 f is attained at some point. By (7) and the maximum principle, at such a point we have

0 � nc2

8
− 2b + 4bR <

nc2

8
− 2b + 4b(c + b)

since f � 0. Given c ∈ (0, 1
2 ], the minimizing choice b = 1−2c

4 yields (1−2c)2

4 < nc2

8 . We obtain a contradiction by choosing

c = 1√
n
2 +2

. �
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Remark. Given a steady Ricci soliton (Mn, g, f ,0) with R + |∇ f |2 = 1 and O ∈ M, since |∇ f | � 1, we have f (x) � f (O ) −
d(x, O ) on M. For the cigar soliton (R2,

4(dx2+dy2)

1+x2+y2 ) we have R = e f assuming maxx∈R2 f (x) = 0. See [14] for an estimate

for the potential functions of steady gradient Ricci solitons.

Acknowledgements

We would like to thank Lei Ni for informing us of his result with Burkhard Wilking.

References

[1] Simon Brendle, Uniqueness of gradient Ricci solitons, Mathematical Research Letters 18 (2011) 531–538.
[2] Huai-Dong Cao, Qiang Chen, On locally conformally flat gradient steady Ricci solitons, Transactions of the American Mathematical Society, in press.
[3] Huai-Dong Cao, De-Tang Zhou, On complete gradient shrinking Ricci solitons, Journal of Differential Geometry 85 (2010) 175–185.
[4] Bing-Long Chen, Strong uniqueness of the Ricci flow, Journal of Differential Geometry 82 (2009) 363–382.
[5] Manolo Eminenti, Gabriele La Nave, Carlo Mantegazza, Ricci solitons: the equation point of view, Manuscripta Mathematica 127 (2008) 345–367.
[6] Fu-Quan Fang, Jian-Wen Man, Zhen-Lei Zhang, Complete gradient shrinking Ricci solitons have finite topological type, Comptes Rendus Mathematique

Academie des Sciences Paris 346 (2008) 653–656.
[7] Mikhail Feldman, Tom Ilmanen, Dan Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Journal of Differential

Geometry 65 (2003) 169–209.
[8] Hongxin Guo, Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton, Proceedings of the American

Mathematical Society 137 (2009) 2093–2097.
[9] Richard S. Hamilton, The formation of singularities in the Ricci flow, in: Surveys in Differential Geometry, vol. II, International Press, Cambridge, MA,

1995, pp. 7–136.
[10] Robert Haslhofer, Reto Müller, A compactness theorem for complete Ricci shrinkers, Geometric and Functional Analysis 21 (5) (2011) 1091–1116.
[11] Lei Ni, Burkhard Wilking, in preparation.
[12] Ovidiu Munteanu, Natasa Sesum, On gradient Ricci solitons, arXiv:0910.1105, Journal of Geometric Analysis, in press.
[13] Stefano Pigola, Michele Rimoldi, Alberto G. Setti, Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift 268 (3–4) (2011) 777–790,

doi:10.1007/s00209-010-0695-4.
[14] Peng Wu, Remarks on gradient steady Ricci solitons, arXiv:1102.3018.
[15] Shijin Zhang, On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Mathematica Sinica 27 (5) (2011)

871–882.

http://dx.doi.org/10.1007/s00209-010-0695-4

	Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
	Acknowledgements
	References


