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We present a novel variational approach to gradient-flow evolution in metric spaces.
In particular, we advance a functional defined on entire trajectories, whose minimizers
converge to curves of maximal slope for geodesically convex energies. The crucial step
of the argument is the reformulation of the variational approach in terms of a dynamic
programming principle, and the use of the corresponding Hamilton–Jacobi equation. The
result is applicable to a large class of nonlinear evolution PDEs including nonlinear drift-
diffusion, Fokker–Planck, and heat flows on metric-measure spaces.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une nouvelle approche variationnelle pour l’étude d’évolution de flot
gradient dans des espaces métriques. En particulier, nous proposons une fonctionnelle
définie sur des trajectoires entières. Nous démontrons que les minimums de cette
fonctionnelle convergent vers des courbes de descente maximale dans le cas d’une énergie
géodésiquement convexe. Le point crucial de l’argument est la reformulation de l’approche
variationnelle en terms du principe de la programmation dynamique. Ce resultat peut
s’appliquer à une large classe d’évolution nonlineaires qui peuvent être reformulées comme
des flots gradient dans des espaces métriques de Wasserstein.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The variational principle

Gradient flows are the paradigm of parabolic evolution and, as such, have received constant attention since the end of
the 1960s. They arise almost ubiquitously in connection with applications such as heat conduction, the Stefan problem, the
Hele-Shaw cell, porous media, parabolic variational inequalities, some classes of ODEs with obstacles, degenerate parabolic
PDEs, and the mean curvature flow for Cartesian graphs, just to mention a few. More recently, following the pioneering work
by Otto [10], an even larger class of PDE problems including transport, nonlinear drift-diffusion, and Fokker–Planck equations
have been translated into gradient flows, in the framework of probability spaces endowed with the Wasserstein metric. In
this connection, the reader is referred to the monograph by Ambrosio, Gigli, and Savaré [2] for a collection of results.
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The aim of this note is to illustrate a novel variational view at gradient flows in metric spaces. Let (X,d) be a complete
and separable metric space and the functional

φ : X → (−∞,∞] be proper, geodesically convex, and with compact sublevels. (1)

Geodesic convexity means that every couple of points in D(φ) := {φ < ∞} can be connected by a minimal and constant speed
geodesic γ : [0,1] → X (thus satisfying d(γ (s), γ (t)) = (t − s)d(γ (0), γ (1))), such that φ(γ (t)) � (1 − t)φ(γ (0)) + tφ(γ (1))

for all t ∈ [0,1]. Note that most of the assumptions in (1) are here chosen for the sake of presentation simplicity and may
be relaxed. In particular, the geodesic convexity requirement in (1) can be weakened, and geodesically λ-convex functional
can be considered, see [9].

We shall consider the global-in-time functionals Iε : AC2(R+; X) → (−∞,∞] given, for ε > 0, by

Iε(u) =
∞∫

0

e−t/ε
(

1

2

∣∣u′∣∣2
(t) + 1

ε
φ
(
u(t)

))
dt. (2)

Here, R+ := [0,∞), and AC2(R+; X) is the set of absolutely continuous curves t ∈ R+ �→ u(t) ∈ X , for which the metric
derivative t �→ |u′|(t) := lims→t d(u(t), u(s))/|t − s| exists a.e. and belongs to L2(R+) [2].

One can check that, for all ε > 0 and ū ∈ D(φ) the problem

min
u∈K (ū)

Iε(u) with K (ū) := {
u ∈ AC2(R+; X): u(0) = ū

}
, (3)

admits a solution, see [9]. Our aim is to show the connection between this minimization problem and curves of maximal slope
( for the functional φ , with respect to the upper gradient |∂φ| and originating from ū). The latter are trajectories u ∈ AC2(R+; X)

such that u(0) = ū and

φ
(
u(t)

) + 1

2

t∫
0

∣∣u′∣∣2
(t)dt + 1

2

t∫
0

|∂φ|2(u(t)
)

dt = φ(ū) for all t � 0. (4)

In (4), the symbol |∂φ|(u) := lim supv→u(φ(u) − φ(v))+/d(u, v), for u ∈ D(φ), stands for the local descending slope of φ

at u [2]. This concept is the natural analogue of the gradient of the energy in a metric setting, where, in absence of a linear
structure, one has to resort to suitable surrogates of gradients and time derivatives. In particular, under assumptions (1), if
X is a Hilbert space endowed with its strong metric, curves of maximal slopes coincide with classical gradient flows, i.e.
solutions of the differential inclusion u′(t) ∈ −∂φ(u(t)) [8]. Our main result reads as follows:

Theorem 1.1 (Variational principle). As ε ↓ 0 the minimizers in (3) admit a subsequence which locally uniformly converges to a curve
of maximal slope.

This convergence result entails the possibility of reformulating the differential problem (4) as a (limit of a class of)
minimization problem(s). In particular, it paves the way to the application of the specific tools of the Calculus of Variations
to (4), especially the Direct Method, relaxation, and Γ -convergence. As a by-product of Theorem 1.1, we have an alternative
existence proof for curves of maximal slope (see [2]).

We recall that the variational approach to gradient flows via the minimization of Iε has been firstly applied to mean
curvature evolution by Ilmanen [5]. Then, two examples of relaxation of gradient flows via Iε are provided by Conti and
Ortiz [4] in the context of microstructure evolution. In the Hilbert case, Theorem 1.1, along with a number of related results,
has been obtained [8]. This variational approach has been applied to rate-independent evolution by Mielke and Ortiz [6]
and further detailed in [7], whereas the doubly nonlinear case is addressed in [1].

We shift here the attention to the metric case. As already mentioned, our interest for gradient flows in metric spaces
is not at all academical, but rather motivated by possible applications to evolution PDEs with nonnegative solutions u :
R

d × R+ → R+ , in the general form

∂t u − ∇ · (u∇(
δuφ(u)

)) = 0 in R
d × R+, (5)

where δuφ(u) is the suitably defined first variation of an integral functional, resulting from the linear combination of the
terms U (u) = ∫

Rd U (u(x))dx, V (u) = ∫
Rd V (x)u(x)dx, W (u) = ∫

Rd×Rd W (x − y)u(x)u(y)dx dy under qualified smoothness
and growth assumptions. The functionals U , V , and W are generally referred to as the internal, the potential, and the
interaction energies, respectively. In particular, the choices F = U + V , U (r) = r log r, and F = U , U (r) = rm/(m − 1), m �
1 − 1/d, respectively yield the Fokker–Planck and the nonlinear diffusion equations. Transport and nonlinear drift-diffusion
equations (with or without nonlocal interactions) can be considered as well. The aforementioned PDE is by now classically
reformulated as a gradient flow equation, in the metric space P2(R

d) of probability measures with finite second moment,
endowed with the Wasserstein 2-metric. Another possible application concerns the heat flow in a Polish metric-measure
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space (M,d,m) satisfying the Lott–Sturm–Villani condition C D(K ,∞) [3]: in this case X = P2(M), φ(μ) = Entm(μ) is the
relative entropy functional, and the family of minimizers uε converge to the unique solution μ = ρm, ∂tρ − 
m,dρ = 0
(see [3] for the definition of the operator 
m,d).

2. The metric inner variation equation

In order to gain some insight into the convergence result of Theorem 1.1, let us present the specific form of the Euler–
Lagrange equation for the minimum problem (3).

Lemma 2.1 (Metric inner variations). Let uε minimize Iε on K (ū). Then, uε fulfills

∣∣u′
ε

∣∣2
(t) + d

dt

(
φ
(
uε(t)

) − ε

2

∣∣u′
ε

∣∣2
(t)

)
= 0 for a.a. t > 0. (6)

In the limiting case ε = 0, relation (6) represents the balance between the variation in energy (density) (d/dt)φ(uε(t))
and the dissipated energy (density) −|u′

ε|2(t). For ε > 0, the extra term (d/dt)(ε/2)|u′
ε |2(t) corresponds to a nonlocal-in-time

correction. If X is a Hilbert space, the Euler–Lagrange equation for Iε reads [8]

−εu′′
ε(t) + u′

ε(t) + ∂φ
(
uε(t)

) 	 0 for a.a. t > 0,

so that relation (6) stems by testing the latter by u′
ε . Eventually, minimizing Iε basically corresponds in addressing an

elliptic-in-time regularization of the original gradient flow evolution.

3. The Dynamic Programming principle

Let us introduce the value function ū ∈ D(φ) �→ V ε(ū) defined by

V ε(ū) := min
u∈K (ū)

Iε(u) = Iε(uε),

for any minimizer uε of problem (3). We have (cf. [9]) that V ε is l.s.c., bounded from below, and that it monotonically
converges to φ everywhere. In particular, V ε(ū) � φ(ū) for all ū ∈ X . Moreover, we have that(

uε → u, sup
ε

φ(uε) < ∞
)

⇒ φ(u) � lim inf
ε↘0

V ε(uε) and
1

2
|∂φ|2(u) � lim inf

ε↘0

1

ε

(
φ(uε) − V ε(uε)

)
. (7)

The crucial tool towards Theorem 1.1 is a metric version of the classical Dynamic Programming principle:

Proposition 3.1 (Dynamic Programming principle). For every T > 0 there holds

V ε(ū) = min
u∈K (ū)

( T∫
0

e−t/ε
(

1

2

∣∣u′∣∣2
(t) + 1

ε
φ
(
u(t)

))
dt + V ε

(
u(T )

)
e−T /ε

)
. (8)

The core of the proof of Theorem 1.1 consists in working out the relations between the value function V ε and the
energy φ, relying on (8). In particular, one can prove that V ε is continuous on the sublevels of φ, that the map t �→ V ε(u(t))
is absolutely continuous, and we have the crucial relation [9, Prop. 2.8]

− d

dt
V ε

(
uε(t)

) = 1

2

∣∣u′
ε

∣∣2
(t) + 1

ε
φ
(
uε(t)

) − 1

ε
V ε

(
uε(t)

)
for a.a. t > 0. (9)

The role of the value function V ε is further illustrated by observing that the minimizer uε is itself a curve of maximal
slope for V ε , with respect to the conditioned local slope |∂̃V ε|, which is defined at u ∈ D(φ) by

∣∣∂̃V ε
∣∣(u) := lim sup

v→u, φ(v)→φ(u)

(V ε(u) − V ε(v))+

d(u, v)
�

∣∣∂V ε
∣∣(u)

(note that the lim sup is taken along sequences also “converging in energy”). Namely, there holds

V ε
(
uε(t)

) + 1

2

t∫
0

∣∣u′
ε

∣∣2
(t)dt + 1

2

t∫
0

∣∣∂̃V ε
∣∣2(

uε(t)
)

dt = V ε(ū) for all t > 0.

This is indeed a consequence of (9), combined with the following relation (to be interpreted as a metric version of the
Hamilton–Jacobi equation for V ε):

2V ε
(
uε(t)

) + ε
∣∣∂̃V ε

∣∣2(
uε(t)

) = 2φ
(
uε(t)

)
for all t > 0.
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4. Convergence proof

We comment here the line of the proof of Theorem 1.1, referring to [9] for all details. Let uε be a minimizer of Iε

on K (ū). An important fact is that the function t �→ φ(uε(t)) is (convex and) nonincreasing in R+ . The convergence proof
follows by passing to the limit as ε → 0 in the integral of (9), namely

V ε
(
uε(t)

) + 1

2

t∫
0

∣∣u′
ε

∣∣2
(s)ds +

t∫
0

1

ε

(
φ
(
uε(s)

) − V ε
(
uε(s)

))
ds = V ε(ū) for all t > 0. (10)

In particular, the latter and the fact that V ε(ū) � φ(ū) entail that |u′
ε| is uniformly bounded in L2(R+) and nonincreasing

in R+ . Hence, by the compactness of the sublevels of φ (see (1)), one extracts a not relabeled subsequence such that
uε(t) → u(t) in X for all t � 0 and |u′

ε| ⇀ m weakly in L2(R+), with m � |u′| a.e. in (0,+∞). In order to pass to the lim inf
in (10) we use the second of (7) and the fact that V ε(ū) ↗ φ(ū). Hence, the ‘�’ inequality in (4) is established. The missing
‘�’ inequality follows directly from the fact that, under assumptions (1), the local slope |∂φ| is a strong upper gradient, see
[2, Def. 1.2.1].
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