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ARTICLE INFO ABSTRACT

Article history: Let w be a simply-connected planar domain. We give necessary and sufficient nonlinear
Received and accepted 20 October 2011 compatibility conditions of Saint-Venant type guaranteeing that, given two 2 x 2 symmetric
Available online 9 November 2011 matrix fields (Eqp) and (Fop) with components in L?(w), there exists a vector field (17;)2_,
Presented by Philippe G. Ciarlet with components 71,72 € H!(w) and n3 € H?() such that 3 (3a7p + dpna + daN3973) =

Eqp and dqpm3 = Fup in o for a, B =1, 2, the left-hand sides of these equations arising
naturally in nonlinearly elastic plate theory. Such a vector field » = (n;) being uniquely
defined if it belongs to a particular closed subspace VO(w) of H'(w) x H'(w) x H2(w), we
study the continuity properties of the nonlinear mapping (E, F) € (L%(w))* x (L2(w))* —
7 € VO(w) defined in this fashion.
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RESUME

Soit @ un domaine plan simplement connexe. On donne des conditions non linéaires de
compatibilité du type de Saint-Venant, nécessaires et suffisantes pour que, étant donné
deux champs (Eqg) et (Fyg) de matrices symétriques dont les éléments sont dans
L%(w), il existe un champ de vecteurs (r),-)?:1 avec des composantes 11,7, € H!(w) et
n3 € H*(w) tel que %(Banfj + 3pNa + 0uM39pm3) = Eqp et dupn3 = Fup dans w pour
o, B =1,2, les membres de gauche de ces équations apparaissant naturellement dans
la théorie des plaques non linéairement élastiques. Un tel champ de vecteurs n = (;)
étant défini de facon unique s'il appartient a4 un sous-espace fermé VO(w) particulier de
H'(w) x H!(w) x H?(w), on étudie les propriétés de continuité de I'application non linéaire
(E, F) € (L*(w))* x (L*>(w))* — 3 € V() définie de cette facon.
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1. The classical approach to nonlinear plate theory
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or 9;;. Vector fields are denoted by boldface letters. The space of all symmetric N x N matrices is denoted SN. Sets of
symmetric matrix fields are denoted by special Roman capital letters.

A domain in RV is a bounded, open, and connected subset 2 of RN with a Lipschitz-continuous boundary I, the set 2
being locally on the same side of I".

To begin with, we briefly describe the classical Kirchhoff-von Kdrmdn-Love model for a nonlinearly elastic plate (so named
after Kirchhoff [7], von Karman [6], and Love [8]), which constitutes the point of departure for the present work. This model
has been fully justified from three-dimensional elasticity by means of Gamma-convergence theory by Friesecke, James and
Miiller [5].

Let @ be a domain in R? and let & > 0. Assume that the set & x [—e&, €] is the reference configuration of a nonlinearly
elastic plate of thickness 2¢ made with a homogeneous and isotropic elastic material characterized by its two Lamé constants
A >0 and pu > 0 (the reference configuration is assumed to be a natural state). Let

Yy
Aupor := ———8apdct + 210 (8ac st + S0z d80 ),
afot "+ 21 afOct U(Baodpr owtdp0)
where 844 designates the Kronecker symbol, denote the components of the two-dimensional elasticity tensor of the plate,
which thus satisfies

Auportortap =41 Z ltap|® forall (tgp) € S?.
a,p

The plate is subjected to applied forces, with resultants p; € L?(w) and qq € L?(w). Define the space

V(w):= H(w) x H(w) x H*(w).

Then the associated displacement problem consists in finding a displacement vector field ¢ = (¢;) of the set @ (the middle
surface of the plate) that minimizes the functional ] defined for each n = (1;) € V(w) by

1 &
Jm) = 5/{Zaaﬁar(3a Nt + 0t No + 06130 M3)(0a Mg + AN + 0 N30873)

w
3
+ 3 Qapor d57 13008 773} dw — L(n),

where

L(n) 3=/pinidw_/‘Qaaa773dw7

w w

over a closed subspace U(w) of V (w) that incorporates boundary conditions that are specific to the problem under consid-
eration. For instance, if the plate is clamped over a portion of its lateral face,

U(w):={n= ;) € V(w): ni=0dn3=00np},

where )4 is a portion of y := dw such that dy-meas yp > 0. Then the corresponding minimization problem has at least one
solution if the norms ||p« | 2(,) are small enough (Ciarlet and Destuynder [2]), or if = yp, in which case there is no longer
any restriction on the magnitude of the norms ||pg|l;2(,, (Rabier [10]). The case py =0 had been previously considered by
Necas and Naumann [9].

While the existence theory for the Dirichlet-Neumann problem (0 < dy-meas yy < dy-meas y) and Dirichlet problem
(y0 = y) is thus well-established, little attention seems to have been given to the Neumann problem (yp = @), at least to the
authors’ best knowledge.

In this respect, one of the outcome of our study will be the existence of a solution to the minimization problem when yp = @
(see Ciarlet and Mardare [3]). To this end, we will re-formulate this minimization problem in terms of the unknowns

1
Eaﬁ::E(aan,g+aﬁna+aan3aﬁn3)eL2(w) and Fop = dupn3 € L?(@), a,f=1,2,

i.e., through an approach that extends to the non-quadratic minimization problem considered here the intrinsic approach
applied by Ciarlet and Ciarlet Jr. [1] to the quadratic minimization problem of three-dimensional linearized elasticity. This is
why our first aim is to introduce and analyze (see Sections 2 and 3) conditions that extend to the nonlinear Kirchhoff-Love
plate theory the weak Saint-Venant compatibility conditions introduced in [1].

Complete proofs will be found in Ciarlet and Mardare [4].
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2. Nonlinear Saint-Venant compatibility conditions

To begin with, we have the following nonlinear analog of Theorem 3.2 of [1]:

Theorem 2.1 (Nonlinear Saint-Venant compatibility conditions). Let w be a simply-connected domain in R? and let there be given
two symmetric matrix fields E = (Eqp) € L?(w) := L?(w; S?) and F = (Fap) € L?(w) whose components satisfy the nonlinear
Saint-Venant compatibility conditions:

a(rrEaﬂ + 8aﬂErrr - aomEﬁr - aﬁrEaa = FomF/jr - FaﬁFor in H_z(a)), (1)
3o Fap = dpFae  in H (). (2)

Then there exists a vector field

n=@) eV :=H(w) x H(w) x H*(w)

such that
1 .
5 @atip + 9pna + 0a1139513) = Eap in L*(), 3)
dapnz =Fap in (). (4)

Besides, any other solution 7 to Eqs. (3)-(4) is of the form

- 1
Ty =nQy)+a+bery—n3(y)d+(d-ye— E(d -y)d foralmostall y € w, (5)
forsome a € R3, b € R, and d € R2, where (e); := 5i3.

Sketch of proof. First, two successive applications of the weak Poincaré lemma (Theorem 3.1 in [1]) to Eqs. (2) show that
there exists 13 € H?(w) such that dupN3 = Fyp in L?(w) (the assumption that e is simply-connected is used here). Second,
let
1 2
eap:=Eqp — §3a7733ﬁ7]3 € L% (w).

Combining the expressions of second-order partial derivatives such as 957 (dy739g73) for smooth functions 73 with the
density of C*°(@) in H'(w) and in H?(w) and with the continuous injection of L'(w) into H~2(w) then eventually shows
that the above functions eqp satisfy

doreap + dupeor — dacepr — dpreas =0 in Hﬁz(a)),
which are precisely the weak Saint-Venant compatibility conditions of Theorem 3.2 in [1] for N = 2. Hence this theorem shows
that there exists a vector field ny = (o) € H 1(w) such that

1 1 .2

E(aanﬁ +9Na) =eap = Eqp — ant’?33ﬂ773 in L*(w)

(the assumptions of simple-connectedness of w is again used here). The existence of a solution B = (74, n3) € V(w) to
Egs. (3)-(4) is thus established.

We next examine the question of uniqueness, for which only the assumption that w is connected (this assumption is
contained in the assumption that w is simply-connected) is used. So, assume that § = (i), 7j3) € V(@) and § = (yy, n3) €
V (w) satisfy

1 . . . 1 .o
5 Paflp + 0pTla + Jal)30p73) = 5 (@t + IpNa + 0a39p13)  in L7(®), (6)

dapTis = dapns  in L2(w). (7)

It is then well known that, since w is connected, Eqs. (7) imply that there exist a constant a3 and a vector d € R? such
that

N3=n3+az3+d-id ae.inw, (8)

where id denotes the identity mapping of the set w. Using relation (8) in Egs. (6) then implies that

) R [
;%w+ww=5@m+%m)mﬁwx 9)
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where
. R 1 .
ﬂH=(77a)=77H—773d—§(d'ld)d- (10)
It is again well known that, since w is connected, relations (9) imply that there exist b € R and ay € R? such that

fy=17y+ay+berid ae inw. (11)

Combining (8), (10), and (11), and letting a := (ay, as) then yields (5). O
Incidentally, Theorem 2.1 shows that, if a vector field 5 = (1;) € V (w) satisfies

1 .
5(aan,g+aﬂna+aan3a,5n3)=0 and dupn3 =0 ae. inow,

then there exist @ e R3, b e R, and d € R? such that y(y)=a+beAy+d-y)e— %(d - y)d for almost all y € w.

One can show (see [4]) that the nonlinear Saint-Venant compatibility conditions (1)-(2) are also necessary. This means
that, given any vector field 5 € V(w), the matrix fields E = (Eqp) € L%(w) and F = (Fap) € L2(w) defined by Egs. (3)-(4)
necessarily satisfy the relations (1)-(2) (in this case, the domain w need not be simply-connected).

Note that the nonlinear Saint-Venant compatibility conditions (1)—(2) reduce in fact to three relations only, e.g.,

31E22 4+ 822E11 — 2012E12 = (F12)> — FiiF22  in H (),
31Fg2 = 0Fq1 in H \(w).
Finally, note that Egs. (3)-(4) can be also written in matrix form as
1 T _ 2 _ . 2
Vsy + 2V173Vn3 =E and V°n3=F inlL%(w),
where (Vs)ap := 3 (0anp + 9p7a) and Vi3 := (3473), so that Vi3 Vnl = (dusn3).

We now introduce a closed subspace VO(w) of V(w) in which the uniqueness of a vector field y satisfying Egs. (3)
and (4) is guaranteed.

Theorem 2.2. Let w be a simply-connected domain in R2. Define the space
E(w) :={(E. F) e L*(®) x L*(®); d51Eap + dupEor — dao Epr — dpr Eao = Fao Fpr — FapFor in H % (w),
do Fap = 3Fac in H ()} (12)
Then, given any (E, F) € E(w), there exists a unique vector field

neVO(a)) ::{n:(m)eV(a)), /ﬂdw:O, /aamda)zo, f(81n2—82n1)dw:0} (13)

@

that satisfies Egs. (3)—(4).

Sketch of proof. By Theorem 2.1, there exists 7 = (§y,173) € V(w) such that Egs. (3)-(4) are satisfied; besides, for any
acR3 beR, and d € R?,

1
170::11+a+be/\id—773d+(d-id)e—E(d-id)d (14)
is also a solution to Eqgs. (3)-(4). Let d := (—(/,, dw)™! J,, 8am3 dw), so that [ 8, n3dw = 0; it is then easily seen that there
exist @ € R? and b € R such that the corresponding vector field #° (as defined in (14)) belongs to the space V%(w).
To show that such a vector field ° is unique, assume that 770 € VO (w) also satisfies Eqgs. (3)-(4), so that iyo is necessarily
of the form

3 1
7)0:no—i-a—i—be/\id—ngd—i—(d-id)e—i(d-id)d

for some @ = (ay, a3) € R3, b € R, and d € R2. It is then easily seen, first that d =0, then that a3 =0, b=0, and ay =0. O
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3. Continuity of the mapping (E, F) e E(®) — 7 € VO (w)

We have the following nonlinear analog of Theorem 4.1 of [1]. The spaces E(w) and V°(w) are those defined in (12)
and (13).

Theorem 3.1. Let w be a simply-connected domain, and let

@ :Ew) — Vi)

be the nonlinear bijection defined for each (E, F) € E(w) by @ (F, F) := 13, where 3 is the unique element in the space V9 (w) that
satisfies Eqs. (3)—(4) (Theorem 2.2). Then there exists a constant C such that

||¢(E7 F)”Hl(w)le(w)tz(w) < C(”E”]Lz(u_)) + ”F”]Lz(w) + ||F||12L2(w)) fOra” (Ev F) € ]E((,()) (]5)

Besides, the set E(w) is sequentially weakly closed in L% (w) x L2 (w), and & maps weakly convergent sequences in E(w) endowed with
the topology of L2 (w) x L2 (w) into strongly convergent sequences in V°(w) endowed with the topology of L% (w) x L%(w) x H(w).

Sketch of proof. That the nonlinear mapping @ is a bijection from E(w) onto V%(w) follows from necessity of the non-
linear Saint-Venant compatibility conditions, and from their sufficiency (established in Theorem 2.2). Besides, for each
n=y,n3) € Vo (w),

-1 _ l T o2
() = VS”H+2V773V773sV n3 ).

Given any § = (§y,13) € V% w), the function n3 € H?(w) satisfies fw n3dw = fw dx13dw = 0. Hence the Poincaré-
Wirtinger inequality implies that there exists a constant C; such that

1731l 420y < C1]| V203 | Lo, forallne Vo(w). (16)

Writing Vs = (Vshy + %Vﬂgvr)g) — %Vn3(Vn3)T, we then infer from the classical two-dimensional Korn’s inequality
that there exists a constant C, such that

1
Vi + 5 Vs Vi3

M4 |1 ()< HY (@) < C2 Lt |Vn3(Vns)T ”Lz(w) forall n € V°(w). (17)
L4 (w)

Given any 7 = (1, n3) € V%(w), the vector field V3 € H'(w) x H'(w) satisfies [, V13 dw = 0; besides, the continuous
injection H'(w) < L*(w) holds. Hence there exist constants C3 and C4 such that
IV 031l < C3IIVI3 Il g1 (o) < Callnallz ) < C1Ca|| V03] 2, foralln e VO(w). (18)

Since, finally, there exists a constant Cs5 such that

2

V13V | o) < Cs(IVI3lisw)” forallp e VO(w), (19)

inequality (15) follows by combining the above inequalities.
In what follows, —, resp. —, denotes strong, resp. weak, convergence. Let (EX, F¥) € E(w), k > 1, and (E, F) € L2(w) x

L%(w) be such that

(E*, F¥) — (E,F) inL*() x L*(w) ask — oo.
By inequality (15), the sequence (nk)kﬁr where )7" := @ (E¥, F¥) € VO(w) is then bounded in VO(w). Since V(w) is reflex-
ive (as a closed subspace of H!(w) x H!(w) x H?(w)), there exists a subsequence (§*)2; and 5 € V°(w) such that

=15 inH'(w)x H'(w) x H*(w) and 3*—n inl%*() x [*(w) x H (w).
Hence F[’;ﬂ = Op n’3‘ — Jdgp73 in L?(w), which shows that Fyp = 0up1m3 (uniqueness of the weak limit). Furthermore ng — 3
in H' () implies 75 — dgn3 in L?(w), so that den59s15 — dan3dp73 in L' (). Since 5 (3anf +3p15) = 5 Panp + 0p7a)
in L?(w), it follows that, for each ¢ € D(w),

1
/E’&,g<pdw—>/5(8anﬁ+3ﬂna+8an38nn3)<pdw,
w

w

which shows that Eqp = %(Banﬁ + dgay + 9u139pn3). Consequently, (E, F) € E(w) since 5 € VO(w). Therefore E(w) is
sequentially weakly closed.
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Finally, the uniqueness of the limit implies that the whole sequence ;7" strongly converges to 3 in L?(w) x L?(w) x
H'(w). O

Note that, when equivalently expressed in terms of the vector fields 5§ € V°(w) (instead of the matrix fields (E, F) in
the space E(w) of (12), inequality (15) provides an instance of a nonlinear Korn'’s inequality.

In [3], Theorem 3.1 will be put to use for establishing the existence of a minimizer over the space E(w) of the functional
J :E(w) — R defined for each (E, F) € E(w) by

1 g3
J(E,F):= E /{gaaﬂarEcrEaﬂ + ?aaﬁarForFaﬂ } dw — L(¢(E’ F))7 (20)
®

when py =0 (if py #0, a vector field in R* must be introduced as an extra variable; cf. [3]), thereby justifying the
intrinsic approach for the Neumann problem described in Section 1. Besides, the convexity of the integrand in the functional
J of (20) with respect to its arguments E = (Eqp) € L2(w) and F = (Fap) € L2(w) will lay the ground for defining a notion
of polyconvexity adapted to the Kirchhoff-von Karman-Love theory of nonlinearly elastic plates.
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