
C. R. Acad. Sci. Paris, Ser. I 349 (2011) 961–964
Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis/Dynamical Systems

Multifractal analysis of multiple ergodic averages

Analyse multifractale des moyennes ergodiques multiples

Aihua Fan a, Jörg Schmeling b, Meng Wu a

a LAMFA, UMR 6140 CNRS, Université de Picardie, 33, rue Saint Leu, 80039 Amiens, France
b MCMS, Lund Institute of Technology, Lund University, Box 118, 221 00 Lund, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 May 2011
Accepted after revision 18 August 2011
Available online 16 September 2011

Presented by Jean-Pierre Kahane

In this Note we present a complete solution to the problem of multifractal analysis of
multiple ergodic averages in the case of symbolic dynamics for functions of two variables
depending on the first coordinate.
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r é s u m é

Dans cette Note nous présentons une solution complète au problème de l’analyse
multifractale des moyennes ergodiques multiples dans le cas du système dynamique
symbolique pour les fonctions de deux variables dépendant de la première coordonnée.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

Let T : X → X be a continuous map on a compact metric space X . Let f1, . . . , f� (� � 2) be � real valued continuous
functions defined on X . We consider the following possible limits (for different x ∈ X ):

M f1,..., f� (x) = lim
n→∞

1

n

n∑
k=1

f1
(
T kx

)
f2

(
T 2kx

) · · · f�
(
T �kx

)
. (1)

Such limits are widely studied in ergodic theory. It was proposed in [2] to give a multifractal analysis of the multiple ergodic
average M f1,..., f� (x). The authors of [2] succeeded in a very special case where X = {−1,1}N , fk(x) = x1 for all k and T is
the shift, by using Riesz products. In this Note, we shall study the shift map T on the symbolic space X = Σm = SN with S =
{0,1, . . . ,m − 1} (m � 2). We assume that � = 2 (the case � � 3 seems more difficult) and f1 and f2 are Hölder continuous.
We endow Σm with the standard metric: d(x, y) = m−n where n is the largest k � 0 such that x1 = y1, . . . , xk = yk . The
Hausdorff dimension of a set A in Σm will be denoted by dim A.

For any α ∈ R, define

L(α) = {
x ∈ Σm: M f1, f2(x) = α

}
.

Let αmin = minx,y∈Σm f1(x) f2(y) and αmax = maxx,y∈Σm f1(x) f2(y). Our question is to determine the Hausdorff dimension
of L(α). We further assume that αmin < αmax (otherwise both f1 and f2 are constant and the problem is trivial).
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From classical dynamical system point of view, the set L(α) is not standard and its dimension cannot be described by
invariant measures supported on it. Let us first examine the largest dimension of ergodic measures supported on the set
L(α) by introducing the so-called invariant spectrum:

F inv(α) = sup
{

dimμ: μ ergodic,μ
(
L(α)

) = 1
}
.

Recall that (see [1])

dimμ = inf
{

dim B: B Borel set,μ
(

Bc) = 0
}
.

The dimension F inv(α) is in general smaller than dim L(α) (compare the next two theorems). It is even possible that no
ergodic measure is supported on L(α).

Theorem 1. Let f1 and f2 be two Hölder continuous functions on Σm. If L(α) supports an ergodic measure, then

F inv(α) = sup

{
dimμ: μ ergodic,

∫
f1 dμ

∫
f2 dμ = α

}
.

It is known [3] that the above supremum is the dimension of the set of points x such that

lim
n→∞

1

n

n∑
k=1

f1
(
T kx

) · lim
n→∞

1

n

n∑
k=1

f2
(
T kx

) = α.

Assume that f1 and f2 are the same function f . As a corollary of Theorem 1, μ(L(α)) = 1 for some ergodic measure μ
implies α � 0. So, if f takes a negative value α < 0, then Theorem 1 shows that there is no ergodic measure supported on
L(α). However, Theorem 2 shows that dim L(α) > 0.

In the following we assume that both f1 and f2 depend only on the first coordinate. For any s ∈ R, consider the non-
linear transfer equation

ts(x)2 =
∑

T y=x

esf1(x) f2(y)ts(y). (2)

It can be proved that the equation admits a unique solution ts : Σm → R+ , which depends only on the first coordinate. Let
dx denote the measure of maximal entropy for the shift on Σm and let

P (s) = log
∫

Σm

ts(x)dx + logm.

Also it can be proved that P is an analytic convex function and even strictly convex when αmin < αmax (Lemma 3.1).

Theorem 2. Let f1 and f2 be two functions on Σm depending only on the first coordinate. For α /∈ [P ′(−∞), P ′(+∞)], we have
L(α) = ∅. For α ∈ [P ′(−∞), P ′(+∞)], we have

dim L(α) = 1

2 logm

(
P (sα) − sα P ′(sα)

)
where sα is the unique solution of P ′(s) = α.

We can prove that αmin � P ′(−∞) � P ′(+∞) � αmax and that αmin = P ′(−∞) if and only if there exist i0, i1, . . . , i� ∈ S
(� � 1) with i0 = i� such that f1(ik) f2(ik+1) = αmin (similar criterion for αmax = P ′(+∞)).

Let us look at two examples on Σ2. For f1(x) = f2(x) = 2x1 − 1, we have

dim L(α) = 1

2
+ 1

2
H

(
1 + α

2

)
, F inv(α) = H

(
1 + √

α

2

)

where H(x) = −x log2 x − (1 − x) log2(1 − x). See Fig. 1 for the graphs of dim L(α) and F inv(α). Remark that F inv(α) = 0
but dim L(α) > 0 for −1 � α < 0. Also remark that dim L(α) was computed in [2] by using Riesz products. See Fig. 2 for
the graphs of dim L(α) and F inv(α) when f1(x) = f2(x) = x1. In the second case F inv(α) = H(

√
α) and dim L(α) can be

numerically computed through P (s) = 2 log t0(s) where x = t0(s) is the real solution of the third order algebraic equation

x3 − 2x2 − (
es − 1

)
x + (

es − 1
) = 0.

These two examples show that F inv(α) < dim L(α) except for some special α’s.
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Fig. 1. When f1(x) = f2(x) = 2x1 − 1. Fig. 2. When f1(x) = f2(x) = x1.

The proof of Theorem 2 is based on the following observation. If f1 and f2 depend only on the first coordinate x1,∑
k f1(T kx) f2(T 2k) can be decomposed into the sum of

∑
j f1(T i2 j

x) f2(T i2 j+1
x) with odd i, which have independent coor-

dinates. This observation was used in [2] to compute the box dimension of X0 = {x: ∀n, xnx2n = 0} which is a subset of
L(0) (here f1(x) = f2(x) = x1 is considered). The Hausdorff dimension of X0 was later computed in [5] where a non-linear
transfer operator characterizes the measure of maximal Hausdorff dimension for X0.

We have stated the results for functions of the form f1(x1) f2(y1) (product of two functions depending on the first
coordinate). But the results with obvious modifications hold for functions of the form f (x1, y1).

2. Proof of Theorem 1

Let μ be an ergodic measure such that μ(L(α)) = 1. Then

α = lim
n→∞

1

n

n∑
k=1

Eμ

[
f1

(
T kx

)
f2

(
T 2kx

)] = lim
n→∞

1

n

n∑
k=1

Eμ

[
f1(x) f2

(
T kx

)] = Eμ

[
f1(x)M f2(x)

]
.

(The first and third equalities are due to Lebesgue convergence theorem and the second one is due to the invariance of μ.)
Since μ is ergodic, M f2 (x) = Eμ f2 for μ-a.e. x. So, α = Eμ f1Eμ f2. It follows that

F inv(α) � sup{dimμ: μ ergodic,Eμ f1 · Eμ f2 = α}.
To obtain the inverse inequality, it suffices to observe that the above supremum is attained by a Gibbs measure ν which is
mixing and that the mixing property implies M f1, f2 (x) = Eν f1 · Eν f2 ν-a.e.

3. Proof of Theorem 2

We will prove a result which is a bit more general than Theorem 2. Our proof is sketchy and a full proof is contained in
[4] where other generalizations are also considered.

Here is the setting. Let ϕ : S × S → R be a non-constant function with minimal value αmin and maximal value αmax. For
α ∈ R, define

E(α) =
{

x ∈ Σm: lim
n→∞n−1

n∑
k=1

ϕ(xk, x2k) = α

}
.

Lemma 3.1. For any s ∈ R, the system

t2
i =

m−1∑
j=0

esϕ(i, j)t j (i = 0,1, . . . ,m − 1)

admits a unique solution (t0(s), t1(s), . . . , tm−1(s)) with strictly positive components, which is an analytic function of s. The function

P (s) = log
m−1∑
j=0

t j(s)

is strictly convex.
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The proof of the lemma is lengthy. The existence and uniqueness of the solution are based on the fact that the square
roots of right members of the system define an increasing operator on a suitable compact hypercube. The analyticity of the
solution is a consequence of the implicit function theorem.

Theorem 3. For any α ∈ [P ′(−∞), P ′(+∞)], we have

dim E(α) = 1

2 log m

(
P (sα) − sα P ′(sα)

)
where sα is the unique solution of P ′(s) = α.

The solution (t0(s), t1(s), . . . , tm−1(s)) of the above system allows us to define a Markov measure μs with initial proba-
bility (π(i))i∈S and probability transition matrix (pi, j)S×S defined by

π(i) = ti(s)

t0(s) + ti(s) + · · · + tm−1(s)
, pi, j = esϕ(i, j) t j(s)

ti(s)2
.

Now decompose the set of positive integers N
∗ into Λi (i being odd) with Λi = {i2k}k�0 so that Σm = ∏

i: 2�i SΛi . Take a

copy μs on each SΛi and then define the product measure of these copies. This gives a probability measure Ps on Σm . Let
D(Ps, x) be the lower local dimension of Ps at x.

Lemma 3.2. For any x ∈ E(α), we have D(Ps, x) � 1
2 logm [P (s) − αs].

It follows that dim E(α) � 1
2 logm [P (s) − αs]. Minimizing the right-hand side gives rise to

dim E(α) � 1

2 log m

[
P (sα) − αsα

]
where sα is the solution of P ′(s) = α. From the lemma, we can deduce that L(α) = ∅ if α /∈ [P ′(−∞), P ′(+∞)]. In order to
get the inverse inequality, we only have to show that Psα is supported on L(α). We first prove the following law of large
numbers by showing the exponential correlation decay of (Fn) under Ps .

Lemma 3.3. Let (Fn) be a sequence of functions defined on S × S such that supn supx,y |Fn(x, y)| < ∞. For Ps-a.e. x ∈ Σm, we have

lim
n→∞

1

n

n∑
k=1

(
Fk(xk, x2k) − EPs Fk(xk, x2k)

) = 0.

Applying the above lemma to Fn(xn, x2n) = ϕ(xn, x2n) for all n and computing EPsϕ(xn, x2n), we get

Lemma 3.4. For Ps-a.e. x ∈ Σm, we have

lim
n→∞

1

n

n∑
k=1

ϕ(xk, x2k) = P ′(s).

Thus we finished the proof for α ∈ (P ′(−∞), P ′(+∞)). If α = P ′(−∞) (resp. P ′(+∞)), as in the standard multifractal
analysis, we use the probabilities Ps and let s tend to −∞ (resp. +∞).
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