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RESUME

Nous présentons une analyse de la super-convergence de I'espace d’élément finis de Han
pour les équations de Stokes. Il est démontré que la différence entre la solution discréte et
I'interpolé naturel de la solution n’est pas de I'ordre supérieur («supercloseness»). Basé sur
notre analyse, nous proposons une modification de I'opérateur d'interpolation qui posséde
cette propriété. Cela permet la construction d'un schéma d’extrapolation simple qui est de
l'ordre trois.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonconforming finite element methods on quadrilateral meshes [1,4] are well-known in computational fluid mechanics,
since they are locally conservation and present advantages concerning iterative solvers [5].

Supercloseness results, which state that the difference between the finite element solution and the interpolation of the
continuous solution is asymptotically smaller than the interpolation error, provide the theoretical basis for defect correction
and extrapolation. Extrapolation of nonconforming finite elements is a well-studied subject; see for example [2,6,3]. How-
ever, results on super-convergence of the Han element for the Stokes equations seem to be missing, and we wish to fill this
gap with the present short note.

We first show, that, as opposed to the case of the Poisson equation, the difference between the discrete solution and the
natural interpolation of the continuous solution does not have the supercloseness property. We then propose a modified
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interpolation operator which yields second-order accuracy in the pressure and gradients of velocities. This result allows us
to construct a simple third-order accurate extrapolation scheme.

Let £2 ¢ R? be bounded polygonal domain and f € L?(£2)2. We denote by (-,-) the L?(£2)-scalar product and by || - ||
the associated norm; for a subdomain K C £2 and a segment S C §2 similar notation are used. Further, | - |, denotes the
semi-norm in H¥(2), k > 1. Let V = H}(2)2, Q =L3(2), and U =V x Q. For (v,p) € U and (w,r) € U we define the
continuous bilinear form a: Q x Q — R by a((v, p), (w,r)) :=(Vv, Vw) — (p, divw) + (divv, r). With I(w) := (f, w), the
standard weak formulation of the Stokes equations homogeneous Dirichlet boundary conditions reads: Find (v, p) € Q such
that for all (w,r) e Q

a((v, p), (w, 1) =l(w). (1)
We consider finite element meshes h composed of rectangles K with length dy, in x;-direction, i = 1,2. The set of
rectangles is denoted by K, and the set of edges by S;. With a fixed choice of unit normal, [vy]s denotes the jump over
an internal edge S; in case of a boundary edge, we set ng =ng and [vi]s = V.
For the pressure approximation we use the space of piece-wise constants,
Qn = {pn € L§(82): pnlk € PU(K) forall K € Kp},

whereas the velocity approximation is sought in the nonconforming space

Vi = {vh € L?(£2)%: vulk € Q(K)? VK € Ky, /[vh]sds:OVS eSh}.
S

Here PX(K) (k € N) and Q(K) denote the set of polynomials of maximal degree k and the vector space engendered by
{1,x,y,x%, y%} on K, respectively. A local basis of V}, is defined on each cell K with edges S;, i=1,...,4 by means of the
functionals ¢;(v) := fSi vfori=1,...,4 and ¢5(v) := fK v. We define the discrete gradient and divergence operators Vj, :

Vi — L2(£22)%*% and divy, : Vi — L2(£2) by (Vavi)|k := V(vplk) and (divy vp)|k := div(vy|k), respectively. Clearly, |vy |y p :=
[Vhvy]l is @ norm in V.
Let Up := Vp x Qp. The discrete bilinear form ap, : Qp x Q; — R reads
an((Vh, Pr), (Wh, ) == (Vi Vh, VaWp) — (pp, divy wy) + (divy va, 1h),

and the discrete problem under consideration is: Find (vy, pp) € Uy such that for all (wy, 1) € Uy
an((Vh, pr)s (Wh, 1)) = l(wp). (2)

The definition of a; extends to the space U & Uy, which we equip with the norm ||(vy, pp)llp := /|Vh|%h + [Iprli2. It is
well-known that there exists a mesh-independent constant C such that

an((vh, pn), (Wp, 1h))
(Wh,Tp)€UR\{0} ll(wh, r)lln

> C|| v b, ¥(vh. Pr) € Up, (3)

since the discrete spaces fulfill the inf-sup condition for the discrete gradient operator. It is well-known that the first-order
error estimate ||(v, p) — (vp, pr)ll < Cdr(|ul2 + |p]1) holds, where dj, denotes the maximal cell diameter. This error estimate
uses standard results for the natural interpolation operator I : U — Uy, I = (IT, Jp) with IT, : V — Vy and Jp: Q — Qp
defined by

ok (Mh(v)) = ¢ (v) VK € Ky, ¢s(IMp(v)) = ¢s(v) VS €S, ok (Jn(p)) = dx(p) VK € K.

As we show in the next section, the natural interpolation operator I, does not yield a supercloseness property. However,
our analysis allows us to construct a modification which yields such a result.

2. Supercloseness analysis

First we state a bound of the difference between the discrete solution and the interpolation of the continuous solution
in terms of the interpolation error.

Lemma 2.1. Let (v, p) € H3(2)? x H2(82). There is a mesh-independent constant C such that

C|H(thph)_1h(v,p)“|h< sup ah((V»p)_Ih(va)a(Wharh))+ch, (4)
(Wh.Th)€UR\{0} ICwh, )l

where the consistency error satisfies
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Ch=— Z (Vv-ng —png)-wp, and |Chl < Cd2(IvIs + |pl2) I Vawhl. (5)
K€’Ch8K

Proof. Estimate (4) follows from the discrete stability (3), the discrete equation, and integration by parts.
For the proof of (5) let us suppose that the edges S; of K are numbered in clock-wise sense starting from the left edge.
We then have for a single term in the definition of Cy

/(Vv —pyn wh—(/ /) BV — (p, 0) whds+</ f) B,V — (0, ) - Wy ds. (6)

oK

We use the continuity of wy and transform each of the terms of (6) to the reference element. For example, for the first
term involving the velocities, letting I7; be the mean values over edges i, the bilinear form

BV, Wy) == /(1 — IT))d 0 - Wy ds — f(l — I13)3 0 - Wp ds < ClogVly g 1Whly ¢
§1 S‘3
It is easy to check that B(¥, W) = 0 for all ¥ € P!(K)?, yielding by Bramble-Hilbert [B(¥, Wpy)| < C|¥|3|Whl1. The scaling

argument leads to (5). O

The result of Lemma 2.1 shows that the leading error term is the interpolation error. However, inspection of the natural
interpolation operator shows that for any wy € Vi and ry € Qp, (Vi (v — ITh(v)), Vawp) =0 and (divy (v — ITp(v)), ) =0,
so that the leading error term is the pressure gradient, analyzed by the next lemma denoting wy = (w}l, wﬁ).

Lemma 2.2. The natural interpolation operator does not provide a supercloseness result since

d2 d2
(p— Jn(p). divwy)=— )" ( 3 /axp Wi dx + 2 /%paz dx) +0(dp)Ipl2lwhl1h- )
K

K E’Ch K

Proof. We use transformation to the reference element, on which we define the continuous bilinear form

A A A Aa A 1 « A " 1 .
B(p, Wp) := /(p — J (D)), Wpdx — 3 / aglpa;f] w) dx—i—/(p — J(B))dg, Wi dx — 3 / 8;Qp8§2wﬁ dx.
It is easy to check that B(p, wy) =0 if p € P!(K). The Bramble-Hilbert lemma therefore leads to (7). O
The crucial point in (7) is that the second-order derivatives of wj, cannot be bounded without loss of accuracy. We next

define a modified interpolation operator which avoids this term. To this end we introduce the linear interpolation operator
Iy : U — Vy (depending on p) satisfying the relations

/Hh(v p)ds_fvds vSeS, and /Hh(v p)ds_/<v~|— (d2 ax]p,dﬁzapr)>dx VK € Ky
3 Kk

and set Iy (v, p) := (Iy'(v, p), Ja(p)). From the preceding analysis we obtain the main result of this section:

Theorem 2.3. There exists a constant C such that for (v, p) € H*(2)? x H2(2), [I(v, p) — I} (v, p)lln < Cd2 (|v]3 + pl2).

3. Extrapolation

In order to obtain a third-order accurate approximation we need to improve the error expansion of Lemma 2.1. This is
done in the following lemma, the proof of which is omitted here:

Lemma 3.1. Under the assumption (v, p) € H*(§2)? x H3(£2) we have

2

d
Z "1 / 2 0y, pwi — 0202 v - wp) + % /(axl 2 pwh — 82 9LV - wy), (8)
I(E/Ch K

where R = 0(d3)([v]4 + |pl3)|whl1,» and
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. 1
(P = Jn(p), divi wp) =3 > /(diaX1pa,i wpy +d3 0, pdg, wi) dx + O (d})plsIwhl1h- 9)
Kelh i

The error expansion of Lemma 3.1 together with (4) opens the door to a simple extrapolation scheme based on two
meshes h and h/2 obtained by regular subdivision. The two discrete pairs of solutions are denoted by (vj, pp) and
(V2. Pnj2). We need to define interpolation operators 17]3 and ]ﬁ with the following properties: for all wp, € Vi,

ve H4(2)2, /2 € Qpy2, and p € H3(£2)
MM, (v, p) =), [ whp)|, , <CIh/2Whplin, v =T (W), , < Cdjlva,
JiUne®) =Ji@).  |Jr@n2)| <Climpgzl, (P —Ji@)| < Cdilpls.

We then define

. AT (vhy) — IT5, (vh) . AJF(onj) — 13, (pn)
vy = 3 N pPp = 3 .

Theorem 3.2. Under the assumption (v, p) € H*(£2)? x H3(§2) we have
|[v—=vill, < Cdi(Ivla+Ipl3). (10)
A similar result holds for the pressure error, but is omitted here.

Proof. We first note that for arbitrary v*, since dy/» =dp/2,

3 _ 3
ATy (Vhya) = Mo n) g(nﬁ(\/h/z) —-v) - %(172311("’1) -

3
4 1 4 1
= g(nﬁ(vh/z) + (d/—,/z)zv* — V) — 5(1_[ h(Vh) ~|—(12V>}< — V) = §Fh/2 — §Fh.
In order to show that F, (and Fp/;) are of third order, we let (v*, p*) be the solution of
1 a2 +d2 oty 1 az - 93p
a((v*, p*), (w.n) = (f*. w), =—= Z ARy (11)
KE]C d;; 0X]0X5 3 Kk d;; 0X;, 1 0Xi

where the index i + 1 is modulo 2. Let (v, pj;) be the discrete analog of (11). From regularity we have

(v, p*) = (Vi )l < Can([v™], + [p7[;) < Cdn(IvIa + 1p13). (12)
Let now Vi, := vy, — IT; (v, p) — dp v} and P, := pp — J;:(p) — d2p;;. Then we have from (3)

H|(V »-Is )“| < sup ah((v,p)_I;(V’ p)s(thrh))"f‘Ch _hzah((V;» pz)v(wharh))
h PR |||, <
" (wreUn\(0) W, )l

which implies by the previous analysis ||(Vi, P)lln < Cdﬁ(|v|4 +1pl3), and therefore
IFnlln = | T3 @h) + (T3 (v) = v) +dj (v* = 115 (vi)) |, < Cdi(Ivla + Ipl3). O (13)
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