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We present a method of factorization for linear elliptic boundary value problems
considered in non-cylindrical domains. We associate a control problem to the boundary
value problem which regularizes it. The technique of change of variables is used to study
this problem.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une méthode de factorisation de problèmes aux limites elliptiques
linéaires dans un domaine non cylindrique. On associe au problème elliptique un problème
de contrôle qui en fournit une régularisation. La technique de changement de variables est
utilisée pour étudier ce problème de contrôle.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [1] Angel and Bellman proposed a method based on spatial invariant embedding for transforming a second-order
elliptic boundary value problem in a rectangle, in a system of first-order decoupled initial value problems which can be
solved by a two-step process. In [4], Henry and Ramos gave a complete justification for this transformation, in the case of
the Poisson equation in an n-dimensional cylindrical domain. The invariant embedding was performed using the coordinate
along the axis of the cylinder. The Neumann to Dirichlet (NtD) operator on a section of the cylinder was shown to satisfy
a Riccati equation. The method is similar to the one used by [5], for deriving the optimal feedback for optimal control
problems of parabolic equations. Its justification is based on a Galerkin method. A shorter proof was given in [2]. In this
study, we generalize this method to non-cylindrical domains. The relationship with a control problem is used to regularize
the Riccati equation. We use a change of variables in order to set the problem in a cylindrical domain. It was shown, in the
case of the cylinder, that the LU block factorization of matrix of the problem discretized by finite differences, can be viewed
as a discretization of the factorized version of the boundary value problem. Other discretizations lead to new numerical
schemes.

E-mail addresses: jacques.henry@inria.fr (J. Henry), bjl@fct.unl.pt (B. Louro), mcs@fct.unl.pt (M. do Céu Soares).
1631-073X/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2011.07.003

http://dx.doi.org/10.1016/j.crma.2011.07.003
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:jacques.henry@inria.fr
mailto:bjl@fct.unl.pt
mailto:mcs@fct.unl.pt
http://dx.doi.org/10.1016/j.crma.2011.07.003


880 J. Henry et al. / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 879–882
Fig. 1. The domain.

2. Elliptic boundary value problem in a non-cylindrical domain

We denote the elements of R
N by (x1, x2, . . . , xN ) = (x, y), where x = x1 and y = (x2, . . . , xN ) to stress the particular role

of x1. For each x ∈ [0,a], let Ox be a bounded open set in R
N−1. We shall call a quasi-cylinder with respect to x, a set Ω

defined in R
N by Ω = ⋃

0<x<a(x, Ox), where y ∈ R
N−1 is the coordinate in the section. We make the following regularity

assumption on Ω: as in [3], we assume that each Ox has a C2 boundary and that there exist C2 diffeomorphisms Tx in
R

N−1, Tx(Oa) = Ox , where Tx denotes the flow associated with the speed field − ∂
∂x Tx(y) = V (x, Tx(y)), continuous with

respect to x ∈ [0,a], y ∈ R
N−1 and verifying Ta(y) = y. We also consider Σ = ⋃

0<x<a(x, ∂Ox) to be the “lateral boundary”
of the domain. Further, Γ0 = {0} × O0 and Γa = {a} × Oa are the “faces” of the domain (see Fig. 1).

We consider the Poisson problem

(P0)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�u = −∂2u

∂x2
− �yu = f , in Ω,

u|Σ = 0,

−∂u

∂x

∣∣∣∣
Γ0

= 0, u|Γa = u1,

where f ∈ L2(Ω) and u1 ∈ H1/2
00 (Oa) (see [6] for the definition of this space). This problem has a unique solution in

L2(0,a; H2(Ox) ∩ H1
0(Ox)) ∩ H1(0,a; L2(Ox)), which is the space of functions verifying

∫ a
0 ‖u‖2

H2(Ox)
dx < ∞, u|∂Ox

= 0 and∫ a
0 (‖u‖2

L2(Ox)
+ ‖ ∂u

∂x ‖2
L2(Ox)

)dx < ∞.

As in [4], we want to factorize this problem by invariant embedding in the family of similar problems

(Ps,h)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�us = f in Ωs =
⋃

0<x<s

(x, Ox),

us|Σs = 0, −∂us

∂x

∣∣∣∣
Γ0

= 0, us|Γs = h,

(1)

where h ∈ H1/2
00 (Os), Γs = {s} × Os and s ∈ ]0,a[.

By linearity of (P0), for every s ∈ ]0,a[ we define the Dirichlet to Neumann map through P (s)h + w = ∂u
∂x |Γs .

In Theorem 5.3 we arrive to the Riccati equation satisfied by this operator, after a change of variables.

3. Optimal control framework and regularization

We can formulate (P0) as an optimal control problem:

(OC0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂x
= v in Ω, u|Σ = 0, u|Γa = u1,

inf
v

J (v) = 1

2

∫
Ω

(|∇yu − ∇yud|2 + |v|2)dx dy,

where u stands for the state, v for the control and ud is given almost everywhere by
{−�yud(x) = f (x) in Ox,

ud|∂Ox = 0.

This is an ill-posed problem, since J is not defined for every v ∈ L2(Ω).
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In order to overcome this difficulty, we make a parabolic regularization of (OC 0):

(OCε)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂uε

∂x
+ √

ε�yuε = v in Ω, uε|Σ = 0, uε|Γa = u1,

inf
v

J (v) = 1

2

∫
Ω

(|∇yuε − ∇yud|2 + |v|2) dx dy.

We can prove (see [5]) that this control problem has a unique solution, uε , in L2(0,a; H1
0(Ox)).

The adjoint state pε is given by:

⎧⎨
⎩

−∂ pε

∂x
+ √

ε�y pε = −�yuε − f , in Ω,

pε|Σ = 0, pε|Γ0 = 0,

and vε = −pε is the optimality condition.
The problem (OCε) corresponds to the regularization of (P0) with a fourth-order operator in y:

(Pε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂2uε

∂x2
− �yuε + ε�2

yuε = f , in Ω,

uε|Σ = 0, −∂uε

∂x

∣∣∣∣
Γ0

= 0, uε|Γa
= u1,

(
∂uε

∂x
+ √

ε�yuε

)∣∣∣∣
Σ

= 0.

4. Change of variables

The derivation with respect to s of the invariant embedding (1), as done in [4], is not obvious as P acts on a space of
functions depending on s. To avoid this problem, we are going to make a change of coordinates, following [3]. Using the
flow Tx , the quasi-cylindrical domain Ω can be mapped isomorphically from the cylinder Q = ]0,a[ × Oa , by the change
of variables (x, Y ) �→ (x, y) = (x, Tx(Y )), Y ∈ Oa . Let DTx be the Jacobian of the transformation Tx and J x = det(DTx). Set
A(x)z = − J−1

x ∇Y .( J x(DTx)
−T (DTx)

−1∇Y z) and B(x)z = −(DTx)
−T ∇Y z.V ◦ Tx , where z(x, Y ) = u(x, Tx(Y )) = u ◦ Tx(Y ).

Being in the framework of [3], by the change of variables the regularized problem (OCε) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂zε

∂x
− √

εA(x)zε + B(x)zε = v ◦ Tx in Q ,

zε|Σ̃ = 0, zε|Γa = u1,

inf
v

J (v) = 1

2

∫
Q

((
DT −1

x (∇Y zε − ∇Y zd)
)2 + |v ◦ Tx|2

)
J x dx dY ,

(2)

with zd = ud ◦ Tx and Σ̃ = ]0,a[ × ∂Oa .
Now the adjoint state is given by

⎧⎨
⎩

−∂qε

∂x
− √

εA�(x)qε + B�(x)qε = A(zε − zd), in Q ,

qε|Γ̃0
= 0, qε|Σ̃ = 0,

where Γ̃0 = {0} × Oa and the optimality condition becomes v ◦ Tx = −qε . The invariant embedding with respect to the
subdomains Q s = ]0, s[ × Oa furnishes a linear operator P̃ε(s) ∈ L(L2(Oa), L2(Oa)), such that the traces on {s} × Oa satisfy
−qε = P̃εzε + rε , so that zε verifies ∂zε

∂x − √
εA(x)zε + B(x)zε = P̃ε(x)zε + rε .

Then we can prove, as in [3], that P̃ε satisfies the well-posed Riccati equation in the cylinder Q , in the following sense

(
d P̃ε

dx
ϕ,ψ

)
J x

+ (√
εA(x)ϕ, P̃ε(x)ψ

)
J x

+ (√
ε P̃ε(x)ϕ, A(x)ψ

)
J x

− (
B(x)ϕ, P̃ε(x)ψ

)
J x

− (
P̃ε(x)ϕ, B(x)ψ

)
J x

+ (
P̃ε(x)ϕ, P̃ε(x)ψ

)
J x

= (
A(x)ϕ,ψ

)
J x
, ∀ϕ,ψ ∈ H1

0(Oa),

with P̃ε(0) = 0.
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5. Convergence results

We can prove the following theorem:

Theorem 5.1. As ε → 0, for x = s and a fixed zε(s) = h ∈ H1
0(Oa), we have zε → z, in H1(Q s), and

√
εAzε → 0, in L2(Q s).

Then, using (2), we can prove that

Theorem 5.2. As ε → 0, ( ∂zε
∂x + B(x)zε)|x=s → ( ∂z

∂x + B(x)z)|x=s in L2(Oa). This implies that, for h ∈ H1
0(Oa), P̃εh → P̃h, in L2(Oa).

As a consequence, we obtain the desired result:

Theorem 5.3. The Dirichlet–Neumann operator P̃ satisfies
(

d P̃

dx
ϕ,ψ

)
J x

− (
B(x)ϕ, P̃ (x)ψ

)
J x

− (
P̃ (x)ϕ, B(x)ψ

)
J x

+ (
P̃ (x)ϕ, P̃ (x)ψ

)
J x

= (
A(x)ϕ,ψ

)
J x
, ∀ϕ,ψ ∈ H1

0(Oa). (3)

Problem (P0) is now equivalent to the factorized formulation, with P̃ given by (3),

dr

dx
− B�r + P̃ r = −Azd, r(0) = 0,

dz

dx
+ B(x)z − P̃ z = r, z(a) = u1 in Q .
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