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where d is a smooth positive function which coincides with dist(x, 3£2) near 352 and C is
a constant depending only on d and £2.
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RESUME

Nous considérons des fonctions u € Wg’l(.(?). ol 2 c RN est un domaine régulier borné.
Nous prouvons que % € Wé’l(.Q) avec

u(x

v (%)
d(x)

ol d est une fonction réguliére positive qui coincide avec dist(x, 952) prés de 952 et C est

une constante ne dépendant que de d et £2.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In [4], the following one-dimensional Hardy type inequality was proved (see Theorem 1.2 in [4]): suppose that u €
W21(0,1) satisfies u(0) = u'(0) =0, then “® e W11(0,1) with “®|,_o =0 and

u(x) !
)
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As explained in [4], this inequality is somehow unexpected because one can construct a function u € W21(0, 1) such
that u(0) = u’(0) =0 and that neither ”7(") nor % belong to L1(0,1); however, as (1) shows, for such function u, the
difference @ — % = (@)/ is in fact an L! function, reflecting a “magical” cancellation of the non-integrable terms.

The purpose of this work is to present the complete analog of the estimate (1) in dimension N > 2. We have the
following:

Theorem 1.1. Let §2 be a bounded domain in RN with smooth boundary 352. Given x € §2, we denote by §(x) the distance from x to
the boundary 9052. Let d : 2 — (0, +00) be a smooth function such that d(x) = §(x) near 952. Then for every u € W(z)‘] (£2), we have

U0 ¢yl ($2) with

d(x)
H < u(x) )
d(x)

where C > 0 is a constant depending only ond and 2.
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In Section 2 we present the notation and in Section 3 we sketch the proof of Theorem 1.1.
2. Notation and preliminaries

Throughout this work, we denote j = (y1,..., yn—1), RY := {yy >0}, and BN :={y e RN: |y| <r}; 2 C RV is always
a bounded domain with smooth boundary 962 and we denote by §(x) := dist(x, 3£2). Using Lemma 14.16 in [6], one can
construct a smooth change of coordinates & : Bf"l x (—€g, €0) — RN, defined by

Dy, 1) :=PF) + ynvoe (D (F)), (3)

where v;0(z) denotes the unit inward normal vector at z € 352 and & : Bf"1 — V(Xg) is a smooth coordinate chart at
Xo € 052 (with V(xp) denoting a neighborhood of xg in 9£2). If we denote

N(%0) := @ (B} ! x (—€0, €0)), (4)
then the map ¢|Br{V—1 %(0.€0) is a diffeomorphism and we denote
NiRo) == {x € 2¢: yx€ V(X)) =@ (BN x (0, €0)). (5)

This type of coordinates are sometimes called flow coordinates (see e.g. [3] and [7]).
3. The proof of the theorem

The key ingredient in the proof is the following lemma:

Lemma 3.1. Suppose u Cgo(Rﬁ). Then foralli=1,..., N we have
u
(57
YN

Proof. We first notice that when i = N, the result is essentially contained in the proof of Theorem 1.2 of [4] when
j=0, k=1 and m = 2. We refer the reader to [4] for the details. When 1 <i < N — 1, define v(x) = u(¥(x)) where
Y(X1,...,Xi,...,XN) = (X1, ..., X + XN, ..., XN). We have

Ly (A0 (30
XN 0Yi 0XN \ XN dYN\ YN

Therefore the estimate is reduced to the case i=N. O

LY < C”u”WZ,l(Rﬁ)'
+

y=¥®

Next we use Lemma 3.1 together with the straightening of the boundary given by @ in Section 2 to obtain

Lemma 3.2. Let Xy € 352 and N, (Xo) be given by (5). Suppose u € C8°(N+ (X0)). Then foralli=1, ..., N we have

31.(@)
5(%)
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Proof. Let v(¥, yn); = u(® (¥, yn)). Using the fact that @ is a smooth diffeomorphism gives

[ (o= | [ (%2 o ©

N+ (Xo)
Since v € C5° (BN~ x (0, €9)) C C5°(RY), we can apply Lemma 3.1 and obtain

€0
v(¥, yN)
[ (50 eswes < ctnsar
BN710

Notice that by the chain rule and the fact that @ is a smooth diffeomorphism, we get

Vw21 N1 0,60 S ClIUIW21 0 oy O

Proof of Theorem 1.1. Applying Lemma 3.2 and a partition of unity (see e.g. Lemma 9.3 in [2] and Theorem 3.15 in [1]), one
can obtain that

(5%
5(x)

for ue C§°(£2) and i =1, ..., N. Then one can complete the proof of Theorem 1.1 using a standard density argument. O

< Cllullwaa g

L)

Remark 1. In fact, we have a full generalization of Theorem 1.1 for functions in Wg”(.Q) for all the integers m > 2, which
is presented in [5].
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