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RESUME

Nous proposons une nouvelle approche pour démontrer que la convergence presque sure
de la série Y o2, a,¢; pour tous les systémes orthogonaux (¢,)32, est équivalente a
I'existence d’'une mesure majorante sur I'ensemble T ={) > a%: n > 1}U{0}. L'ingrédient
principal est une nouvelle méthode de construction de séries orthogonales.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

An orthonormal sequence (¢n);2, on a probability space (£2,F,P) is a sequence of random variables ¢, : 2 — R such
that E(p,% =1 and Epn@n =0 whenever n # m. The problem we treat in this Note is how to characterize the sequences of
(an)p2, for which the series

x
Z ann converges a.e. for any orthonormal (¢n)ne 4, (1)

n=1

on all probability spaces (£2,F,P). Note that we can assume a, > 0, for n > 1. It occurs that the answer is related to the
analysis of the set

n
T= Za%:n}l U {0}.
m=1

A trivial observation is that to have the series convergent one needs T to be compact.
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The characterization should be stated in terms of geometry of T. There were several steps towards the general result.
For various applications it suffices to use the Rademacher-Menchov theorem (see [4]).

Theorem 1. Whenever

o0
Zaﬁ log?(n+1) < o0,

n=1

then for each orthonormal sequence (¢n);2 ; the series Zﬁil any is a.e. convergent.

A more involved analysis is based on the study of regular partitions of T. Suppose that T C [0, M), then define
Av=1{A%: 0<i<4k), k>0 where A¥ = [i4™*M, (i + D4 *M) N T. Let Ny = {i € {0,1,...,4 1} AY +£ @) and
T = U,-eNk [i47*M, (i + 1)4~¥M). By || - || denote the Ly-norm on Ly(0, 1). It is proved in [6] (see also [7]) that there exists
a permutation o on N for which Y 02 ; agn)¢n converges a.e. for any orthonormal (¢n)p2, if and only if || Yo 1r,ll < oo.
Moreover (see [12] and [7]) Y12 o m@n converges for all permutations o on N and orthonormal (¢,)32, if and only if

Y ke I Il < oo
The complete characterization of (1) was finally presented in [7,8]. The approach is based on a deep study of partitions
Ay, k >0 and the following classical result of Tandori [12]:

Theorem 2. For each orthonormal sequence (¢y);2 ; the series > n 1 angn converges a.e. if and only if

m 2
E sup (Z angon> < 00.

m>1 n=1

Several equivalent conditions characterizing (1) are given in [8]. For our purposes we choose the language of majorizing
measures. Let

ds,t)=+/|s—t|, s,teT, B(t,e)={seT:d(s,t) <e}.
A Borel probability measure p on T is called majorizing (in the orthogonal setting) if

M

sup/(,u(B(t, 5)))_% de < oo.

teT

Theorem 3. The series (1) converges for all orthonormal (¢n);;2  if and only if there exists a majorizing measure on T.

2. Majorizing measures in the orthogonal setting

Majorizing measures were invented to characterize sample boundedness for certain stochastic processes. The simplest
way to control a process X(t), t € T is to consider all its increments X (t) — X(s), s,t € T. We say that a process X(t), t € T
is of suborthogonal increments if

E(X(D) — X(5))* <d(s,0)%, s,teT. 2)

Under the increment condition the existence of a majorizing measure implies sample boundedness. The result was first
proved in [9] and generalized in [1]. By Theorem 3.2 in [1]:

Theorem 4. If there exists a majorizing measure m on T, then for each process X(t), t € T that satisfies (2) the following inequality
holds:

M 2
E sup (X(t) — X(5))* <1652 (sup/(,u(B(t, e)))‘% de) < o0.

s,teT teT
0

The difficult part is to give a complete characterization of sample boundedness for a certain process or a class of pro-
cesses. The first example [3] (cf. [10]) which validated the majorizing measure definition was that for any ultrametric space
the existence of a majorizing measure is a sufficient and necessary condition for all processes of bounded increments to
be sample bounded. Then appeared the characterization of sample boundedness for Gaussian processes [9] and many other
canonical processes [11,5]. Also, the author could generalize the result for the ultrametric spaces to a setting [2] which in
the special suborthogonal case gives:
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Theorem 5. Whenever each process X(t), t € T that satisfies (2) is sample bounded then there exists a majorizing measure on T.

Consequently Theorems 4 and 5 imply that the sample boundedness of all suborthogonal processes on T is equivalent
to the existence of a majorizing measure. The proof of Theorem 5 is based on Fernique’s [3] (see also [10]) technique of
constructing a majorizing measure.

Theorem 6. Whenever each probability Borel measure j on T is weakly majorizing i.e.

M
sup//(,u(B(t,s)))_% de u(dt) < oo
"
T 0O

then there exists a majorizing measureon T.

Now we turn to the main question of characterizing (1). We say that a process X(t), t € T has orthogonal increments if
E(X(t) — X(9)) =d(s, )%, s,teT. 3)

Recall that T = {an:1 aﬁq: n > 1} U {0}. There is a bijection between orthonormal series Zﬁ; anen and processes with
orthogonal increments on T. Namely for each orthonormal sequence (¢y);2; we define the process X(t) = an:1 an@y, for

t=Y" a2 X(0)=0 and for each process X(t), t € T we define orthonormal ¢ = a;,' (X(X0_, a2) — X(X" ) a2)), m > 1
and ¢1 = X(a%) — X(0). Therefore by Theorem 2 each orthogonal series Z;’f;] anen is a.e. convergent if and only if there
exists a universal constant M < oo such that
Esup|X(t) — X(0)]> <M (4)
teT

for all orthogonal processes on T. This class of processes is significantly smaller than the class of suborthogonal processes.
Our main result is the following:

Theorem 7. If all orthogonal processes satisfy (4) then
M
_1
sup//(,u(B(t,e))) 2 <M < oo.
"
T 0

Together with Theorems 4, 5, 6 this completes a new proof of Theorem 3. The proof of Theorem 7 is based on the study
of natural partitions Ay, k > 0 and a special partitioning scheme.

3. Regular partitions

We start the analysis translating the language of weakly majorizing measures into the language of natural partitions A,
k > 0. Note that if t € A,(k) then A,.(k) C B(t,27%M), and therefore

41 4k
ez m) Fua < ¥ [ @A) Fuan < Y (4>,
T i:OAfk) i=0
Consequently
M oo 4k—1
//(;L(B(t, &) 2 de pu(dt) < MY 27Ky (11(A®))2.
T o k=1 i=0

The second point is that given @ not all subsets Agk) € Ay are important. Let 1 <c <2 < C. We define I®) as the set of

indexes i € {0, 1, ..., 4% — 1} for which Afk) # and
1 (A=) (k) 1, (a0 (k) 1, ( ak—1 oo s
c M(A[i/4] ) <u(A)<c H“(A4[i/4] U A4[i/4]+2) S¢ M(A[i/4])’ if 21,
1 k=) (k) 21 a0 (k) 1, ak—1 ooy
¢ I‘L(A[i/4j ) <u(A”) <c “(A4[i/4j+1 U A4[i/4]+3) ¢ M(Afi/4])’ if21i.

The main observation is that to show that u is weakly majorizing one need only care about Agk), iel®,
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Proposition 8. There exist 1 < ¢ < 2 < C such that for each probability Borel measure (4 on T the following inequality holds:

M : oo 41 :
[ [ee) ™ <tfi+ 32 Y @A) 1w |
T 0 k=1 i=0

where L < oo is a universal constant.

4. The partitioning scheme

We follow an idea of Talagrand [9] of considering suitable set functionals. We define the set functionals Fj : Ay — R,
k>0 by

k .
Fl<(A§ )):sng sug)Y(t), for 0 <i < 4
teA;

where the supremum is taken over all process Y (), t € Agk) (where AE") = Agk) U {i4=*M, (i +1)4~¥M}), such that EY (t) =0
forall t e Ai(k) and

E(Y()—Y(s))  =Is—t|(1—4*M~s —¢]), foralls,teA®.

A trivial observation is that (3) implies Fo(T) < oco. The partitioning scheme is based on the following induction step:

Proposition 9. There exists a universal constant K < oo such that for each Agkfl) € Av_1,k>1,0<i< 4 the following inequality
holds:

3 3
k— 1 _ 1 _ k 1 k 1 X
(A2 Fica (AF7) 2 2278 D (1 (AR ) T ere + D (AR ) Fie(A)-
j=0 j=0

Since Fo(T) < oo Proposition 9 implies

4k

o0
1
2y (1(A%)) 215000 < KFo(T) < 00
k=1 i=0

and therefore Theorem 7 follows from Proposition 8.
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