
C. R. Acad. Sci. Paris, Ser. I 349 (2011) 175–178
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations/Mathematical Problems in Mechanics

The div–curl lemma for sequences whose divergence and curl are
compact in W −1,1

Le lemme div–rot pour les suites dont la divergence et la boucle sont bornées dans W −1,1

Sergio Conti a, Georg Dolzmann b, Stefan Müller a,c

a Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
b Universität Regensburg, 93040 Regensburg, Germany
c Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 July 2009
Accepted after revision 23 March 2010
Available online 3 January 2011

Presented by John M. Ball

It is shown that uk · vk converges weakly to u · v if uk ⇀ u weakly in Lp and vk ⇀ v
weakly in Lq with p, q ∈ (1,∞), 1/p + 1/q = 1, under the additional assumptions that
the sequences div uk and curl vk are compact in the dual space of W 1,∞

0 and that uk · vk

is equi-integrable. The main point is that we only require equi-integrability of the scalar
product uk · vk and not of the individual sequences.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On montre que uk · vk converge faiblement vers u · v si uk ⇀ u faiblement dans Lp , vk ⇀ v
faiblement dans Lq , les séquences div uk et rot vk sont compactes dans l’espace dual de
W 1,∞

0 et uk · vk est équi-intégrable, pour p,q ∈ (1,∞), 1/p + 1/q = 1. En effet, on n’utilise
que l’équi-intégrabilité du produit scalaire uk · vk , et non pas celle de chacune des suites.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the theorem

The div–curl lemma is the cornerstone of the theory of compensated compactness which was developed by Murat and
Tartar in the late seventies [14,15,17–19], and is still a very active area of research [6]. In its classical form the lemma
states the following: if {uk}k∈N and {vk}k∈N are sequences in L2(Ω;R

n) which converge weakly in L2(Ω;R
n) to u and v ,

respectively, and if div uk is compact in H−1(Ω) and curl vk is compact in H−1(Ω;M
n×n), then

uk · vk ⇀ u · v in D′(Ω).

A natural generalization concerned sequences bounded in L p(Ω;R
n) and Lq(Ω;R

n), respectively, where p,q ∈ (1,∞) are
dual exponents, 1/p + 1/q = 1, div uk is compact in W −1,p(Ω) and curl vk is compact in W −1,q(Ω;M

n×n), respectively,
see [15]. Important connections to Hardy spaces were established in [8], and an application to pairings between L∞ vector
fields and measures was developed in [3].

This Note is inspired by questions in nonlinear models in crystal plasticity [9] in a two-dimensional setting. The key
point in this context is to prove that the determinant of the deformation gradient det∇ϕk converges to det ∇ϕ under the
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assumption that ∇ϕk = Gk + Bk where Gk ⇀ ∇ϕ weakly in L2 and Bk → 0 strongly in L1. The key additional information is
that det ∇ϕk is compact in L1.

Motivated by this application, we present a generalization of the div–curl lemma with very weak assumptions on div uk
and curl vk and the additional assumption that uk · vk is equi-integrable (see the remarks after the theorem). We denote the
dual of W 1,∞

0 (Ω) by W −1,1(Ω).

Theorem. Let Ω ⊂ R
n be an open and bounded domain with Lipschitz boundary and let p,q ∈ (1,∞) with 1/p + 1/q = 1. Suppose

uk ∈ L p(Ω;R
n), vk ∈ Lq(Ω;R

n) are sequences such that

uk ⇀ u weakly in Lp(
Ω;R

n) and vk ⇀ v weakly in Lq(Ω;R
n), (1)

and

uk · vk is equi-integrable. (2)

Finally assume that

div uk → div u in W −1,1(Ω) and curl vk → curl v in W −1,1(Ω;M
n×n). (3)

Then

uk · vk ⇀ u · v weakly in L1(Ω). (4)

Remarks.

(i) The statement is almost classical under the stronger hypothesis that |uk|p and |vk|q are equi-integrable (see the lemma
below). The main novelty is that here we require only that uk · vk is equi-integrable, and this is crucial for the application
in [9].

(ii) The assumption that the inner product uk · vk is equi-integrable is necessary as can be seen from the one-dimensional
example of a Fakir’s carpet. Let uk = vk be given on the unit interval by uk = √

k
∑k

�=1 χ[�/k,k−2+�/k] . Then uk converges

to zero weakly in L2(0,1) and strongly in L1(0,1), but u2
k converges to one in the sense of distributions.

The crucial observation in the proof is the fact that given (2) we can construct modified sequences ũk and ṽk such that
ũk · ṽk has the same weak limit as uk · vk and the sequences |uk|p and |vk|q are equi-integrable and therefore compact in
W −1,p and W −1,q , respectively. The sequences are constructed using the biting lemma [7,4] and Lipschitz truncations of
Sobolev functions which originate in the work of Liu [12] and Acerbi and Fusco [1,2] and have found important applications
in the vector-valued calculus of variations, see, e.g., [5,20,13].

In two dimensions, a change of variables leads to weak continuity of the determinant:

Corollary. Let Ω ⊂ R
2 be an open and bounded domain with Lipschitz boundary, and let ϕk ∈ W 1,1(Ω;R

2) be such that ∇ϕk =
Gk + Bk, with Bk → 0 strongly in L1 and Gk ⇀ G weakly in L2 . If the sequence det∇ϕk is equi-integrable, then det ∇ϕk ⇀ det G
weakly in L1 .

2. Proofs

We begin with the proof of the lemma that shows how equi-integrability of |uk|p leads to compactness of div uk . We say
that a sequence uk ∈ L p(Ω;R

n) is L p-equi-integrable if there is an increasing function ω : [0,∞) → R with limt→0 ω(t) = 0,
such that∫

A

|uk|p dx � ω(t) for all A ⊂ Ω measurable with |A| � t. (5)

Lemma. Let Ω ⊂ R
n be a bounded Lipschitz set, 1 < p < ∞, and let uk ∈ L p(Ω;R

n) be an L p-equi-integrable sequence. If div uk → 0
in W −1,1(Ω), then div uk → 0 in W −1,p(Ω). The analogous statements hold for curl uk and ∇uk.

Proof. Let ω be as in (5). By definition and density of C∞
0 (Ω) in W 1,q

0 (Ω),

‖div uk‖W −1,p(Ω) = sup

{∫
∇ϕ · uk dx: ϕ ∈ C∞

0 (Ω),

∫
|∇ϕ|q dx � 1

}
, (6)
Ω Ω
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where q is given by 1/p+1/q = 1. Fix ϕ ∈ C∞
0 (Ω) with ‖∇ϕ‖q � 1 and t > 0. By the truncation argument in [10, Lemma 4.1]

or [11, Proposition A.2] there is a t-Lipschitz function ψ ∈ W 1,∞
0 (Ω) such that the measure of the set M = {ψ 
= ϕ or ∇ψ 
=

∇ϕ} is bounded by c∗/tq , where c∗ depends only on Ω . We decompose∫
Ω

∇ϕ · uk dx =
∫
Ω

(∇ϕ − ∇ψ) · uk dx +
∫
Ω

∇ψ · uk dx. (7)

The second term is bounded by ‖∇ψ‖L∞‖div uk‖W −1,1 . The first term is concentrated on the set M , and by Hölder’s in-
equality can be estimated by

∫
M

(∇ϕ − ∇ψ) · uk dx �
(∫

M

(|∇ϕ| + t
)q

dx

)1/q(∫
M

|uk|p dx

)1/p

. (8)

The first factor is bounded by ‖∇ϕ‖Lq(M) + |M|1/qt � 1 + c1/q∗ , the second by (ω(c∗t−q))1/p in view of the equi-integrability
of the sequence |uk|p , and we conclude that

‖div uk‖W −1,p(Ω) �
(
1 + c1/q∗

)(
ω

(
c∗t−q))1/p + t‖div uk‖W −1,1(Ω), (9)

with ω as in (5). The assertion follows with t = ‖div uk‖−1/2
W −1,1(Ω)

. �
Proof of the theorem. We divide the proof into four steps. The first three treat the case u = v = 0.

Step 1. Modification of uk and vk to obtain Lp- and Lq-equi-integrable sequences, respectively. The sequence |uk|p is bounded
in L1, and therefore the biting lemma [4,16] implies the existence of a sequence of sets Ak ⊂ Ω such that |Ak| → 0
and, after extracting a subsequence, |uk|pχΩ\Ak is equi-integrable. Set ũk = ukχΩ\Ak . Since ‖ũk − uk‖L1(Ω) = ‖uk‖L1(Ak)

�
|Ak|1/q‖uk‖Lp(Ω) it follows that

ũk − uk → 0 in L1(Ω). (10)

Therefore the two sequences uk , ũk have the same weak limit (in L p). Furthermore, ∇(ũk −uk) → 0 in W −1,1(Ω;M
n×n), and

therefore div ũk → 0 in W −1,1(Ω). One proceeds analogously with vk , obtains the corresponding sets Bk and a sequence
ṽk = vkχΩ\Bk . To conclude this step it remains to prove that uk · vk − ũk · ṽk ⇀ 0 in L1. To see this, we observe that this
expression vanishes outside of Ak ∪ Bk , and that it equals uk · vk on this set. By equi-integrability of uk · vk and the fact that
|Ak ∪ Bk| → 0, we conclude that uk · vk − ũk · ṽk → 0 in L1.

Step 2. Strong W −1,p convergence and reduction to the classical div–curl lemma. The sequence ũk is L p-equi-integrable, and
its divergence converges strongly to zero in W −1,1. Therefore by the lemma we obtain that div ũk → 0 in W −1,p(Ω).

Analogously one shows that curl ṽk → 0 in W −1,q(Ω). By the classical div–curl lemma we then conclude that ũk · ṽk
∗
⇀ 0 in

D′(Ω).

Step 3. Identification of the L1-weak limit. Since the sequence uk · vk is by assumption equi-integrable it has a subsequence
which converges weakly in L1. The same holds for ũk · ṽk . But the two limits are the same (Step 1) and the latter is zero
(Step 2). Since the limit does not depend on the subsequence, the entire sequence converges. This concludes the proof if
u = v = 0.

Step 4. General case. We set ũk = uk − u, ṽk = vk − v . Equi-integrability of the sequence ũk · ṽk follows from
∫

A |uk · v|dx �
‖uk‖Lp(Ω)‖v‖Lq(A) for all A ⊂ Ω (and analogously for u · vk). By Steps 1–3, ũk · ṽk ⇀ 0 weakly in L1(Ω). The proof is
concluded observing that uk · v and u · vk converge weakly in L1 to u · v . �
Proof of the corollary. Let uk = (e1 · Gk)⊥ = (−Gk

12, Gk
11), vk = e2 · Gk = (Gk

21, Gk
22), so that det Gk = uk · vk . Since Gk + Bk is

a gradient, div uk = ∂1 Bk
12 − ∂2 Bk

11, and therefore ‖div uk‖W −1,1 � ‖Bk‖L1 → 0. The same estimate holds for curl vk . At this
point the corollary follows from the theorem. �
Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through FOR 797 Analysis and computation of
microstructure in finite plasticity, projects Co304/4-1, Do633/2-1, Mu1067/9-1.



178 S. Conti et al. / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 175–178
References

[1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984) 125–145.
[2] E. Acerbi, N. Fusco, An approximation lemma for W 1,p functions, in: J.M. Ball (Ed.), Material Instabilities in Continuum Mechanics and Related Mathe-

matical Problems, Oxford Univ. Press, 1988, pp. 1–5.
[3] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983) 293–318.
[4] J.M. Ball, F. Murat, Remarks on Chacon’s biting lemma, Proc. Amer. Math. Soc. 107 (1989) 655–663.
[5] J.M. Ball, K.-W. Zhang, Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 367–379.
[6] M. Briane, J. Casado-Díaz, F. Murat, The div–curl lemma “trente ans après” an extension and an application to the G-convergence of unbounded

monotone operators, J. Math. Pures Appl. 91 (2009) 476–494.
[7] J.K. Brooks, R.V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980) 16–26.
[8] R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247–286.
[9] S. Conti, G. Dolzmann, C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, 2010, preprint.

[10] G. Dolzmann, N. Hungerbühler, S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued
right hand side, J. Reine Angew. Math. 520 (2000) 1–35.

[11] G. Friesecke, R. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm.
Pure Appl. Math. 55 (2002) 1461–1506.

[12] F.-C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977) 645–651.
[13] S. Müller, A sharp version of Zhang’s theorem on truncating sequences of gradients, Trans. Amer. Math. Soc. 351 (1999) 4585–4597.
[14] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 5 (1978) 489–507.
[15] F. Murat, Compacité par compensation : condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Scuola Norm.

Sup. Pisa, Cl. Sci. (4) 8 (1981) 69–102.
[16] M. Saadoune, M. Valadier, Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal. 2 (1995) 345–357.
[17] L. Tartar Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires, in: Journ. d’Anal. non lin., Proc., Besancon, 1977, in:

Lect. Notes Math., vol. 665, 1978, pp. 228–241.
[18] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., vol. 4,

in: Edinburgh Res. Notes Math., vol. 39, 1979, pp. 136–212.
[19] L. Tartar, The compensated compactness method applied to systems of conservation laws, in: Systems of Nonlinear Partial Differential Equations,

Oxford, 1982, in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285.
[20] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 19 (1992) 313–326.


	The div-curl lemma for sequences whose divergence and curl are compact in W-1,1
	Statement of the theorem
	Proofs
	Acknowledgements
	References


