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We extend the classical abc theorem for polynomials (also known as Mason’s, or Mason–
Stothers’, theorem) to general analytic functions on the disk.
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r é s u m é

On généralise le « théorème abc » sur les polynômes (alias le théorème de Mason–Stothers)
au cas des fonctions analytiques arbitraires sur le disque.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

Given a polynomial p (in one complex variable), write deg p for the degree of p and Ñ(p) = ÑC(p) for the number of
its distinct zeros in C. The so-called abc theorem, often referred to as Mason’s theorem (but essentially due to Stothers [8]),
reads as follows:

Theorem A. Suppose a, b and c are polynomials, not all constants, having no common zeros and satisfying a + b = c. Then

max{deg a, deg b, deg c} � Ñ(abc) − 1. (1)

Various approaches to and consequences of Theorem A are discussed in [4–7]. One impressive – and immediate – appli-
cation is a simple proof of Fermat’s Last Theorem for polynomials, saying that there are no nontrivial polynomial solutions to
the equation Pn + Q n = Rn when n � 3. Besides, it was Theorem A that led (via the classical analogy between polynomials
and integers) to the famous abc conjecture in number theory; see [4,6].

In this Note, we present an abc type theorem that applies to a much more general situation. Namely, we replace the
polynomial equation a + b = c by

f0 + · · · + fn = fn+1, (2)

where the f j ’s are analytic functions on the (closed) disk D∪T. Here and below, we write D for the unit disk {z ∈ C: |z| < 1}
and T for its boundary, ∂D. The functions are thus assumed to be analytic in some open neighborhood of D ∪ T.
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With each f j we associate the (finite) Blaschke product B j built from the function’s zeros. This means that B j is given
by

z �→
s∏

k=1

(
z − ak

1 − akz

)mk

, (3)

where ak = a( j)
k (1 � k � s = s j) are the distinct zeros of f j in D, and mk = m( j)

k are their respective multiplicities. Further,
let B denote the least common multiple of the Blaschke products B0, . . . , Bn+1 (defined in the natural way), and put

B := rad(B0 B1 . . . Bn+1).

Here, we use the notation rad(B) for the radical of a Blaschke product B; this is, by definition, the Blaschke product that
arises when the zeros of B are all converted into simple ones. In other words, given a Blaschke product of the form (3), its
radical is obtained by replacing each mk with 1.

Finally, we write W = W ( f0, . . . , fn) for the Wronskian of the (analytic) functions f0, . . . , fn , so that

W :=

∣∣∣∣∣∣∣∣
f0 f1 . . . fn

f ′
0 f ′

1 . . . f ′
n

. . . . . . . . . . . .

f (n)
0 f (n)

1 . . . f (n)
n

∣∣∣∣∣∣∣∣ . (4)

We then introduce the quantities

κ = κ(W ) := ∥∥W ′∥∥
L1(T)

‖1/W ‖L∞(T),

λ = λ(W ) := ∥∥W ′∥∥
L2(D)

‖1/W ‖L∞(T)

and

μ = μ(W ) := ‖W ‖L∞(T)‖1/W ‖L∞(T).

(It is understood that D is endowed with the normalized area measure dA, while T is endowed with the normalized
arclength measure dm.) The three quantities are finite, provided that W has no zeros on T.

Theorem 1.1. Suppose f j ( j = 0,1, . . . ,n+1) are analytic functions on D∪T, related by (2) and such that the Wronskian (4) vanishes
nowhere on T. Then

ND(B) � κ + nμND(B) (5)

and

ND(B) � λ2 + nμ2ND(B), (6)

where ND(·) denotes the number of the function’s zeros in D, counting multiplicities.

2. Discussion

(i) Neither of the inequalities (5) and (6) implies the other. However, (5) offers a smaller factor in front of ND(B), since
μ � 1.

(ii) Both inequalities (5) and (6) are sharp. Consider, as an example, the functions f0(z) = 1 and f j(z) = εz j/ j! ( j =
1, . . . ,n) with a suitable ε > 0; then define fn+1 by (2). If ε is small enough, then fn+1 is zero-free on D. The Blaschke
products that arise are B0(z) = Bn+1(z) = 1 and B j(z) = z j for 1 � j � n, whence B(z) = zn and B(z) = z. Also, one easily
checks that W = εn(= const), which implies κ = λ = 0 and μ = 1. Consequently, equality holds in both (5) and (6).

To get an example where equality holds with nonzero κ and λ, take f0, . . . , fn−1 as above, then put fn(z) = εzm/m! for
some integer m > n, and again define fn+1 by (2).

(iii) Any of the two estimates, (5) or (6), implies Theorem A. Let us explain how to derive (1) from (5). Given a, b and
c as in Theorem A, write d for the left-hand side of (1). At least two of the polynomials, say a and b, must then be of
degree d. Set d1 := deg c. Further, let R be a large positive number, ensuring that the disk RD = {z: |z| < R} contains the
zeros of the three polynomials. Next, we adjust Theorem 1.1 to the disk RD in place of D (by rescaling) and apply it with
n = 1, putting f0 = a, f1 = b and f2 = c. Since a, b and c have no common zeros, the least common multiple B coincides
with the product of the three Blaschke products (the ones built from the three polynomials, regarded as functions on RD);
a similar remark applies to B, once the three Blaschke products are replaced by their radicals. The left-hand side of the
rescaled version of (5) is NRD(B), or equivalently NRD(abc), which reduces to the sum of the three degrees, i.e., to 2d + d1.
Making a suitable replacement for NRD(B) on the right-hand side, we obtain

2d + d1 � κR + μR Ñ(abc), (7)
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where κR and μR are the rescaled versions of κ and μ:

κR =
(

R

∫
T

∣∣W ′(Rζ )
∣∣ dm(ζ )

)
·
(

min
RT

|W |
)−1

and μR =
(

max
RT

|W |
)

·
(

min
RT

|W |
)−1

.

The desired estimate (1) will now follow from (7) upon passing to the limit as R → ∞. It suffices to notice that the
Wronskian W = W (a,b) = W (a, c) is a polynomial whose degree, say l, does not exceed d + d1 − 1. It is the leading term,
const · zl , that determines the asymptotic behavior of κR and μR , so the limits of the two quantities are l and 1, respectively.
Substituting these into (7) and using the bound l � d + d1 − 1 yields (1).

(iv) Several extensions and refinements of Theorem 1.1 are available. In particular, the f j ’s need not be analytic on the
closed disk; we may assume instead that they are analytic on D and appropriately smooth up to T. The functions may then
have infinitely many zeros in D, a complication that calls for a new approach. Finally, the disk D can be replaced by a general
(reasonably nice) domain – say, by a bounded simply connected domain Ω ⊂ C with ∂Ω a rectifiable Jordan curve. Some
of these matters are treated in [3].

3. Proof of Theorem 1.1 (sketch)

We shall only outline the proof of (6). The first step consists in verifying that B divides W Bn , in the sense that W Bn/B
is analytic on D (and in fact on D ∪ T). This algebraic step is fairly elementary and can be accomplished by expanding the
determinant along the appropriate column, while keeping track of the zeros; see [3] for details.

Now we know that W Bn = F B, with F analytic. Therefore,∥∥(
W Bn)′∥∥2

L2(D)
= ∥∥(F B)′

∥∥2
L2(D)

, (8)

and we proceed by estimating the two Dirichlet integrals that arise. Writing LHS (resp., RHS) for the left-hand (resp., right-
hand) side of (8), we have

RHS =
∫
D

∣∣(F B)′
∣∣2

dA =
∫
D

∣∣F ′∣∣2
dA +

∫
T

|F |2∣∣B′∣∣ dm.

The latter identity can be either deduced from Green’s formula or readily borrowed from [1]; see also [2]. Consequently,

RHS �
∫
T

|F |2∣∣B′∣∣dm =
∫
T

|W |2∣∣B′∣∣dm � ‖1/W ‖−2
L∞(T)

· ND(B); (9)

we have also used the facts that |F | = |W | on T (because |B| = |B| = 1 there) and ‖B′‖L1(T) = ND(B). Similarly, we infer
that

LHS =
∫
D

∣∣W ′∣∣2
dA + n

∫
T

|W |2∣∣B′∣∣dm �
∥∥W ′∥∥2

L2(D)
+ n‖W ‖2

L∞(T) · ND(B). (10)

Finally, we combine the resulting inequalities from (9) and (10) to arrive at (6).
The strategy for proving (5) is largely similar to the above. This time, however, the Dirichlet space gets replaced by the

Hardy–Sobolev space H1
1 := { f : f ′ ∈ H1}, and a result from [9] is employed concerning the canonical factorization in H1

1.
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