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In this Note we present an axiomatic exposition of Cornut–Vatsal’s main ingredient in their
proof of Mazur conjecture. Our aim is to extract clean ergodic statements and discuss a
possible strategy towards effectivity.
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r é s u m é

Dans cette Note on présente une vue axiomatique de l’argument principal de la démonstra-
tion par Cornut–Vatsal de la conjecture de Mazur. Notre objectif est d’extraire des énoncés
ergodiques clairs et de discuter une possible stratégie vers une version effective.

© 2010 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Mazur conjecture [6] has attracted a lot of attention in the recent years. The proof by Cornut and Vatsal [1,3,4,9] com-
bines in a nice way Galois properties of Heegner points and ergodic properties of flows on large products of trees. It is our
feeling that the details of the proof are not yet clearly understood. In this Note we present the central part of the argument
in a concise way.

We differ slightly from the original proof at several places. Our main observation is that only the topological density of
the relevant unipotent orbits is required (versus equidistribution). Statements that follow may be extracted from the above
mentioned papers, the most relevant being Sections 2.2–2.7 of [3]. We make no claim of originality.

1. Orbit closure

Let G = PGL2(Qp) with U a one-parameter unipotent subgroup and T a one-dimensional torus, which may or may not
be split. Let an integer r � 2 and a sequence of lattices Γi for 1 � i � r be given.

Lemma 1.1. Assume the following:

(i) For all i, the commensurator of Γi does not contain a non-trivial unipotent and intersects T non-trivially (infinite).
(ii) For all pairs i �= j, the lattices Γi and Γ j are not commensurable.

(iii) For all pairs i �= j, the lattices Γi and Γ j are either T -commensurable or not G-commensurable.

Then there is a countable set T ⊂ T such that for all t ∈ T − T and all pairs i �= j, the lattices t−1Γit and t−1Γ jt are not
U -commensurable.
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Proof. We may consider each pair i �= j separately. From the assumption (iii) we may assume that Γi and Γ j are T -
commensurable. Choose s ∈ T such that Γi and s−1Γ j s are commensurable. Let t ∈ T such that:

∃u ∈ U , tut−1 ∈ Comm(Γi).s. (1)

We have to prove that the set of such t is countable. Observe that u is necessarily non-trivial because of assumption (ii).
There are two cases:

If T normalizes U , then T is split and T U is a Borel subgroup. For all r ∈ Comm(Γi) ∩ T , the commutator [tut−1s−1, r]
is unipotent and belongs to Comm(Γi). Thus it is trivial by assumption (i), and tut−1s−1 commutes with Comm(Γi) ∩ T
(infinite). This implies that tut−1s−1 is in T which would contradict the earlier fact that u is non-trivial. Therefore in that
case there is no t ∈ T satisfying (1).

If T does not normalize U . We observe that the map T × U − {e}, (t, u) �→ tut−1 is injective. Since Comm(Γi).s is
countable, this concludes the proof of the lemma.

There are several ways to see that the commensurator is countable. Conjugation by an element g ∈ Comm(Γi) sends a
finite index subgroup Γ ′ inside Γi . There are countably many finite index subgroups in Γi . Choose a finite set of generators
for Γ ′ . The centralizer of Γ ′ is the center of G thus trivial. The element g is uniquely determined by the images of these
generators of Γ . These images are in Γi which is countable. �

Consider Gr with U and T diagonally imbedded and the product lattice Γ = ∏r
i=1 Γi . Let Y = Γ \Gr and π : G → Gr → Y

be the composition of the diagonal map and the natural projection.
We fix an isomorphism u : Qp → U and a compact open subgroup κ of Z×

p . Let H be a compact open subgroup of G .
We consider the finite quotient X = Γ \Gr/Hr and let πH : G → Y → X be the composition of π and the natural projection.

Theorem 1.2. Assumptions are as in Lemma 1.1. For all t ∈ T − T , the orbit π(tU ) is dense in Y . More precisely, for all t ∈ T − T we
have πH (tu(p−mκ)) = X for all integer m large enough.

The above theorem is consequence of Ratner orbit closure theorem [7]. Indeed the orbit closure theorem says that the
closure of π(tU ) is equal to π(tv−1 M v) for some v ∈ U r and a sugbroup M of Gr which is the product of a certain number
of copies of G . The fact that for all i �= j the lattices t−1Γit and t−1Γ jt are not U -commensurable implies that M = Gr and
therefore the closure of π(tU ) is Y . The orbit closure theorem is established as well in Margulis–Tomanov [5]. An exposition
of their proof in the present setting is given by Shah [8].

2. Translations of torus orbits

Theorem 2.1. Assumptions are as in Lemma 1.1. For all but finitely many g ∈ T \G/H, πH (T g) = X.

Theorem 2.1 follows from Theorem 1.2 and the decomposition (2) below. This implication is traditionally pictured by
saying that a far translate of a geodesic is approximated by a long horocycle.

2.1. Levels

The quotient T \G/H is countable. It is possible to define a level function that takes values in N and roughly measures
the distance to the origin. This is related to the notion of level for Heegner points in the arithmetic context. Details on this
and the next claim may be found in [3, Section 2.6] and are generalized in [2].

Let U be a one-parameter unipotent subgroup of G and u : Qp → U an isomorphism. A way to understand the approx-
imation by horocycles is to study the locally constant map u �→ T ug H for various elements g . There exists a finite index
subgroup κ of Z×

p and a finite sequence of group elements gk ∈ G such that (disjoint union):

G =
⊔

k

∞⊔

m=0

T u
(

p−mκ
)

gk H, (2)

where each T u(p−mκ)gk H is actually a single (T , H)-coset. When T is split and normalizes U it is a rephrasing of the
Iwasawa decomposition (at least for H an adapted maximal compact subgroup).

2.2. Proof of Theorem 2.1

We may fix one of the finitely many indices k. We have to prove that for m large enough:

πH
(
T u

(
p−m)

gk
) = X . (3)

This is equivalent to πH (T u(p−mκ)gk) = X . Changing H by its conjugate H ′ = gk H g−1, it is the same as saying that
k
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πH ′
(
T u

(
p−mκ

)) = X ′ (4)

for m large enough, where X ′ = Γ \G/H ′r . This fact is consequence of Theorem 1.2.

2.3. Effective version

An effective version of Theorem 2.1 would mean the following. One ought to find a constant n0 depending effectively
on T , Γi and H inside G , such that for all g ∈ T \G/H of level greater than n0, we have πH (T g) = X .

2.4. Possible strategy

From the above observations a possible approach for obtaining an effective version of Mazur conjecture emerges. It may
be divided into two distinct steps.

1) One ought to establish an effective version of the orbit closure theorem for products of PGL2(Q p) or the slightly
weaker form given in Theorem 1.2. The arguments by Shah [8, Sections 2–9] are mostly self-contained, and although intri-
cated can probably be made effective. The main difficulty is in bypassing the use of minimal sets.

2) Then one ought to establish an effective version of the Diophantine assumptions (i)–(iii). The proof of these assump-
tions in [4] consists mostly in algebraic identifications, which is an indication that it can probably be made effective.
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