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For a positive function F on Sn which satisfies a suitable convexity condition, we consider
the r-th anisotropic mean curvature for hypersurfaces in R

n+1 which is a generalization
of the usual r-th mean curvature Hr . By using an integral formula of Minkowski type for
compact hypersurface due to H.J. He and H. Li, we introduce some new characterizations
of the Wulff shape.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donné une fonction positive F sur Sn qui vérifie une condition de convexité
convenable, nous considérons la r-ième courbure moyenne anisotrope pour les hyper-
surfaces de R

n+1 qui est une généralisation de la r-ième courbure moyenne usuelle Hr .
En utilisant une formule intégrale de type Minkowski pour les hypersurfaces compactes
due à H.J. He et H. Li, nous introduisons de nouvelles caractérisations des formes de Wulff.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let F : Sn →R
+ be a smooth function which satisfies the following convexity condition:(

D2 F + F 1
)

x > 0, ∀x ∈ Sn, (1)

where D2 F denotes the intrinsic Hessian of F on Sn , 1 denotes the identity on Tx Sn , > 0 means that the matrix is positive
definite.

We consider the map

φ : Sn → R
n+1,

x �→ F (x)x + (gradSn F )x,

its image W F = φ(Sn) is a smooth, convex hypersurface in R
n+1 called the Wulff shape of F (see [1,6,7,9]).

When Mn is compact convex hypersurface, the following characterization of the Wulff shape is recently known, also for
Riemannian case (see [5]):
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Theorem 1.1. (See [4, Theorem 1.4].) Let X : M → R
n+1 be an n-dimensional compact convex hypersurface, F : Sn → R

+ be a smooth
function which satisfies (1). If Mr

Mk
= const. for some k and r, with 0 � k < r � n, then X(M) is the Wulff shape up to translations and

homotheties.

We generalize Theorem 1.1 in the following way:

Theorem 1.2. Let X : M → R
n+1 be an n-dimensional compact convex hypersurface, F : Sn → R

+ be a smooth function which
satisfies (1). If there are nonnegative constants C1, . . . , Cr such that

Mr =
r−1∑
i=0

Ci Mi,

then X(M) is the Wulff shape up to translations and homotheties.

In addition, using the integral formula of Minkowski type in [4], we have the following theorem:

Theorem 1.3. Let X : M → R
n+1 be an n-dimensional compact convex orientable hypersurface, F : Sn → R

+ be a smooth function
which satisfies (1). If there is an integer r, 1 � r � n such that either 〈x, ν〉�−F Mr−1

Mr
or 〈x, ν〉�−F Mr−1

Mr
throughout M, then X(M) is

a Wulff shape.

This theorem is an anisotropic version of the theorem in [2].

2. Preliminaries

Let X : M → R
n+1 be a smooth immersion of a compact, orientable hypersurface without boundary. Let ν : M → Sn

denote its Gauss map, ν is a unit inner normal vector of M .
Remember that A F = D2 F + F 1, S F = −A F ◦ dν . Here S F is called the F -Weingarten operator, and the eigenvalues of

S F are called anisotropic principal curvatures. Let σr be the elementary symmetric functions of the anisotropic principal
curvatures λ1, . . . , λn

σr =
∑

i1 <,...,<ir

λi1 . . . λir (1 � r � n).

We set σ0 = 1. The r-th anisotropic mean curvature Mr is defined by

Mr = σr

Cr
n
, Cr

n = n!
r!(n − r)!

which was introduced by Reilly in [8].
The following Minkowski formula will be essential to proof of Theorems 1.2 and 1.3:

Lemma 2.1. (See [4, Theorem 1.1].) Let X : M → R
n+1 be an n-dimensional compact hypersurface, F : Sn → R

+ be a smooth function
which satisfies (1). Then the following integral formulas of Minkowski type hold:∫

M

(
F Mr + Mr+1〈x, ν〉) dA X = 0, r = 0, . . . ,n − 1. (2)

The following lemmas will also be used in the sequel:

Lemma 2.2. Let X : M → R
n+1 be an n-dimensional compact convex hypersurface without boundary, F : Sn → R

+ be a smooth
function which satisfies (1).

(i) It holds that

Mi

Mr
� Mi−1

Mr−1
, i � r. (3)

The equality holds if and only if all the anisotropic principal curvatures are the same.
(ii) If there are nonnegative constants C1, . . . , Cr−1 such that Mr = ∑r−1

i=1 Ci Mi , then

Mr−1 �
r−1∑
i=1

Ci Mi−1, (4)

and if furthermore, the equality holds then all the anisotropic principal curvatures are the same.
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Proof. (i) From the convexity on M all the principal curvatures of M are positive, so all the anisotropic principal curvatures
are positive, we have Mr > 0, 0 � r � n on M . By [3] we can write

Mi−1Mi+1 � M2
i , . . . , Mr−2Mr � M2

r−1, (5)

and equality holds in (5) if and only if λ1 = · · · = λn .
We can easily check

Mi Mr−1 � Mr Mi−1,

that is,

Mi

Mr
� Mi−1

Mr−1
.

(ii) Since Mr = ∑r−1
i=1 Ci Mi and Mr > 0, by (3),

1 =
r−1∑
i=1

Ci
Mi

Mr
�

r−1∑
i=1

Ci
Mi−1

Mr−1

or

Mr−1 −
r−1∑
i=1

Ci Mi−1 � 0. (6)

If the equality holds, we have

Mi

Mr
= Mi−1

Mr−1
,

which implies that all the anisotropic principal curvatures are the same. �
Lemma 2.3. (See [4, Lemma 3.4].) If λ1 = · · · = λn = const 	= 0, then X(M) is the Wulff shape up to translations and homotheties.

3. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. From (2), (6) and integrating

F Mr−1 �
r−1∑
i=1

Ci F Mi−1 (7)

over M . We get

0 �
∫ (

F Mr−1 −
∑

Ci F Mi−1

)
dA X

= −
∫

Mr〈x, ν〉dA X −
∑

Ci

∫
F Mi−1 dA X

= −
∫

Mr〈x, ν〉dA X +
∑

Ci

∫
Mi〈x, ν〉dA X

= −
∫ (

Mr −
∑

Ci Mi

)
〈x, ν〉dA X = 0.

Then, by the assumptions we have

Mr−1 =
r−1∑
i=1

Ci Mi−1 (8)

on M . Hence by Lemma 2.2 and Lemma 2.3, all the anisotropic principal curvatures are equal. That is X(M) is the Wulff
shape. �
Proof of Theorem 1.3. Since Mk > 0, the conditions 〈x, ν〉 � −F Mr−1

Mr
or 〈x, ν〉 � −F Mr−1

Mr
are respectively equivalent to

Mk〈x, ν〉 + F Mk−1 � 0 and Mk〈x, ν〉 + F Mk−1 � 0. Together with either two inequalities and by (2) for r = k − 1 we have,
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∫ (
F Mk−1 + Mk〈x, ν〉) dAx = 0.

This equality implies that 〈x, ν〉 = −F Mk−1
Mk

. Substituting this value of 〈x, ν〉 in Eq. (2) for r = k, we obtain

∫
1

Mk

(
F M2

k − F Mk+1Mk−1
)

dA X = 0.

Due to the convexity of the function F and [3] we get

M2
k − Mk+1Mk−1 = 0.

Then all the anisotropic principal curvatures are the same at all points of M . From Lemma 2.3 X(M) is the Wulff shape
up to translations and homotheties. �
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