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We prove the existence of solutions for the semilinear elliptic problem in Ω = B(0, R)c ,
N � 3.

−�u = G ′(u),

under suitable general assumptions on the nonlinear term G .
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous demontrons l’existence d’une solution pour des équation elliptiques
non linéaires in Ω = B(0, R)c , N � 3

−�u = G ′(u),

pour a general nonlinéarité G .
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In this Note we consider the semilinear elliptic problem in the exterior of a ball, N � 3

{−�u = G ′(u) on Ω = B(0, R)c,

u = 0 on ∂Ω,
(1)

where B(0, R)c = {x ∈ R
N such that |x| > R} and G = − 1

2 u2 + R(u) ∈ C2 fulfill the hypotheses

∣∣R ′(u)
∣∣ � c1|u|p−1 + c2|u|q−12 < p � q <

2N

N − 2
; (2)

there exists ξ0 > 0 s.t. G(ξ0) > 0. (3)

Eq. (1) has been intensively studied in case Ω = R
N , see e.g. [3], and in case Ω bounded domain with regular boundary

for a wide class of nonlinearities, see e.g. [1]. Eq. (1) is the Euler–Lagrange equation associated to the following functional
I : H1

0(Ω) → R given by
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I(u) = 1

2
‖u‖2

H1
0(Ω)

−
∫

R(u)dx. (4)

It is well known that the functional I(u) exhibits a mountain pass geometry (see Proposition 1) and in this scenario the
classical deformation lemma asserts that a Palais–Smale sequence (PS) exists at critical level c. The first and crucial difficulty
is to give an a priori estimate on the Palais–Smale sequence, i.e. to prove that un is bounded in H1

0(Ω) in case of general
nonlinearity not fulfilling the classical Ambrosetti–Rabinowitz condition.

In an abstract framework, given an Hilbert space H let we consider the family of functionals that shows a mountain pass
geometry for λ = 1

I(λ, u) = 1

2
‖u‖2

H − λ J (u), (5)

where J ∈ C2(H,R) and λ ∈ R
+ and ∇ J : H → H is a compact mapping.

Theorem 1.1 of [5] states that there exists a sequence (λn, un) ∈ R × H such that{
un is a critical point of I(λn, u) λn → 1,

I(λn, un) bounded.
(6)

As a matter of fact the existence of a sequence un of solution for the approximated problem does not guarantee in general
that we can pass to the limit and prove that a solution for the case λ = 1 exists. The main difficulty is again the a priori
estimate on the approximated solutions un . In some cases, a Pohozaev type identity applied to the approximated problem,
guarantees the boundness of the un sequence and then the existence of a solution for the original problem, see e.g. [4]
and [2] in the case of nonlinear Schrödinger equation in RN .

In this Note we show that a Pohozaev type identity for the perturbed equation exists and that this constraint gives the
boundness of the perturbed solutions. Therefore, under the above mentioned hypotheses we have the following

Theorem 1 (main theorem). If (2), (3) hold then functional (4) has a mountain pass critical point.

In order to prove the main theorem we define the perturbed functional I(λ, .) : H1
r (Ω) → R

I(λ, u) = 1

2
‖u‖2

H1(Ω)
− λ

∫
R(u)dx, (7)

where the nonlinear term is weakly continuous in

H1
r (Ω) = {

u ∈ H1
0(Ω) such that u radially symmetric

}
.

Before to prove the main theorem some preliminaries are in order:

Proposition 1. If (2), (3) hold then functional (4) has a mountain pass geometry.

Proof. We notice simply that

I(u) � 1

2
‖un‖2

H1
r (Ω)

− c1‖un‖p
H1

r (Ω)
− c2‖un‖q

H1
r (Ω)

,

and that the sequence un defined as follows

un(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ0(|x| − Rn + 1) for Rn − 1 � |x| � Rn,

ξ0 for Rn � |x| � 2Rn,

ξ0(2Rn − |x| + 1) for 2Rn � |y| � 2Rn + 1,

0 for |x| � 2Rn + 1,

where ξ0 is defined in (3) fulfills I(un) < 0 for Rn → ∞. Indeed∫
Ω

|∇un|2 dx = O
(

RN−1
n

)

and

∫
Ω

G(un)dx =
2Rn∫

Rn

rN−1 G(ξ0)dr + O
(

RN−1
n

) = C G(ξ0)RN
n + O

(
RN−1

n

)
.

Since G(ξ0) > 0 it follows that I(un) is negative for n large enough. �
We show now a Pohozaev type identity that is crucial for the a priori estimate.
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Lemma 1. Let u be a solution of

−�u + u = λR ′(u) on Ω = B(0, R)c,

then we have

u′2(R)RN

2
+ 2 − N

2

∫
Ω

|∇u|2 dx = −λN

∫
Ω

R(u)dx + N

2

∫
Ω

|u|2 dx.

Proof. We write (1) using the radial symmetry of the solution

−u′′ − N − 1

r
u′ + u = λR ′(u), (8)

then we have

− d

dr

(
u′2

2
r2N−2

)
= (

λR ′(u) − u
)
r2N−2u′.

We get

−
∞∫

R

1

rN−2

d

dr

(
u′2

2
r2N−2

)
dr = λ

∞∫
R

R ′(u)rN u′ dr −
∞∫

R

urN u′ dr,

and by integration by parts we have

u′2(R)RN

2
+ (2 − N)

∞∫
R

u′2

2
rN−1 dr = λ

∞∫
R

d

dr

(
R(u)

)
rN dr −

∞∫
R

d

dr

(
1

2
|u|2

)
rN dr,

and hence

u′2(R)RN

2
+ 2 − N

2

∫
Ω

|∇u|2 dx = −Nλ

∫
Ω

R(u)dx + N

2

∫
Ω

|u|2 dx. �

Lemma 2. Let (λn, un) ∈ R × H1
r (Ω) be a sequence such that ∇ I(λn, un) = 0, λn → 1 and I(λn, un) bounded. Then ‖un‖H1

r (Ω) is
bounded.

Proof. Step I: ‖un‖D1,2(Ω) is bounded. We have thanks to Lemma 1
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

∫
Ω

(|∇un|2 + |un|2
)

dx − λn

∫
Ω

R(un)dx � K ,

u′2
n (R)RN

2N
+ 2 − N

2N

∫
Ω

|∇un|2 dx = −λn

∫
Ω

R(un)dx + 1

2

∫
Ω

|un|2 dx.

(9)

By adding the equations we get

u′2
n (R)RN

2N
+ 1

N

∫
Ω

|∇un|2 dx � K .

Step II: ‖un‖L2(Ω) is bounded.
Thanks to (2) and the interpolation inequality we have

I(λn, un) � 1

2
‖un‖2

H1
r (Ω)

− c1λn‖un‖α1 p
L2(Ω)

‖un‖(1−α1)p
L2∗

(Ω)
− c2λn‖un‖α2q

L2(Ω)
‖un‖(1−α2)q

L2∗
(Ω)

, (10)

where α1 = N
p − N−2

2 and α2 = N
q − N−2

2 .
The Sobolev inequality gives

I(λn, un) � 1

2
‖un‖2

H1
r (Ω)

− c1λn‖un‖α1 p
L2(Ω)

‖un‖(1−α1)p
D1,2(Ω)

− c2λn‖un‖α2q
L2(Ω)

‖un‖(1−α2)q
D1,2(Ω)

. (11)

The fact that α1 p < 2 and α2q < 2 for any p,q > 2 proves the boundness of ‖un‖L2(Ω) . �
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Proof of the main theorem. Let un be a sequence such that ∇ I(λn, un) = 0, λn → 1 and I(λn, un) bounded. The existence of
such sequence is proved in [5]. The a priori estimate for un is given by Lemma 2. There exist ū such that un → ū a.e. and
by Strauss theorem [6] we have up to subsequences ‖un − ū‖Lp(Ω) = o(1) for 2 < p < 2N

N−2 . We have

−�un + un − R ′(un) = λn R ′(un) − R ′(un) = o(1) in H−1(Ω), (12)

and hence un is a Palais–Smale sequence for the functional I . Indeed by (2) we have∣∣∣∣
∫
Ω

(λn − 1)R ′(un)ϕ dx

∣∣∣∣ � |λn − 1|
(

c1

∫
Ω

|un|p−1|ϕ|dx + c2

∫
Ω

|un|q−1|ϕ|dx

)
, (13)

and hence∣∣∣∣
∫
Ω

(λn − 1)R ′(un)ϕ dx

∣∣∣∣ � |λn − 1|(c1‖un‖p−1
H1(Ω)

‖ϕ‖H1(Ω) + c2‖un‖q−1
H1(Ω)

‖ϕ‖H1(Ω)

)
. (14)

Let us consider two functions un and um in the PS sequence, by subtraction we get

−�(un − um) + (un − um) − (
R ′(un) − R ′(um)

) → 0, (15)

and we obtain∫
Ω

∣∣∇(un − um)
∣∣2

dx +
∫
Ω

∣∣(un − um)
∣∣2

dx −
∫
Ω

(
R ′(un) − R ′(um)

)
(un − um)dx = o(1). (16)

Indeed by (2) we have∫
Ω

∣∣(R ′(un) − R ′(um)
)
(un − um)

∣∣ dx � c1

(∫
Ω

|un|p−1|un − um|dx +
∫
Ω

|um|p−1|un − um|dx

)

+ c2

(∫
Ω

|un|q−1|un − um|dx +
∫
Ω

|um|q−1|un − um|dx

)
= o(1). (17)

Eventually we have∫
Ω

∣∣∇(un − um)
∣∣2

dx +
∫
Ω

∣∣(un − um)
∣∣2

dx → 0, (18)

i.e. un is a Cauchy sequence in H1
r (Ω). We obtain ‖un − ū‖H1

r (Ω) = o(1). �
References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
[2] A. Azzollini, A. Pomponio, On the Schrödinger equation in R

N under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (3) (2009) 1361–
1378.

[3] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1982) 313–345.
[4] L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation in RN , Indiana Univ. Math. J. 54 (2) (2005) 443–464.
[5] M. Lucia, A mountain pass theorem without Palais–Smale condition, C. R. Math. Acad. Sci. Paris, Ser. I 341 (5) (2005) 287–291.
[6] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (2) (1977) 149–162.


	Existence of solutions for semilinear elliptic problems in exterior of ball
	References


