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RESUM E

Dans cette Note, nous demontrons I'existence d’une solution pour des équation elliptiques
non linéaires in 2 = B(0, R)*, N >3

—Au=G'(u),

pour a general nonlinéarité G.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In this Note we consider the semilinear elliptic problem in the exterior of a ball, N >3

{—Au:G’(u) on 2 = B(0, R), 0
u=0 onds2,
where B(0, R)° = {x € RN such that |x| > R} and G = —Ju? + R(u) € C? fulfill the hypotheses
2N
IR’(u)I<C1|u|"‘1+Cz|u|q‘12<p<q<m; (2)
there exists &y > 0 s.t. G(&p) > 0. (3)

Eq. (1) has been intensively studied in case 2 =RV, see e.g. [3], and in case £2 bounded domain with regular boundary
for a wide class of nonlinearities, see e.g. [1]. Eq. (1) is the Euler-Lagrange equation associated to the following functional
I:H}(£2) > R given by
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1
1) = 3 Iy 0, ~ [ R dx "

It is well known that the functional I(u) exhibits a mountain pass geometry (see Proposition 1) and in this scenario the
classical deformation lemma asserts that a Palais—Smale sequence (PS) exists at critical level c. The first and crucial difficulty
is to give an a priori estimate on the Palais-Smale sequence, i.e. to prove that u, is bounded in H(l)(Q) in case of general
nonlinearity not fulfilling the classical Ambrosetti-Rabinowitz condition.

In an abstract framework, given an Hilbert space H let we consider the family of functionals that shows a mountain pass
geometry for A =1

1
1A u) = Euun%, —rJ (), (5)

where | € C2(H,R) and A e Rt and VJ: H — H is a compact mapping.
Theorem 1.1 of [5] states that there exists a sequence (A, Uuy) € R x H such that
up is a critical point of I(Ay, u) Ay — 1, 6)
I(An, uy) bounded.

As a matter of fact the existence of a sequence u, of solution for the approximated problem does not guarantee in general
that we can pass to the limit and prove that a solution for the case A =1 exists. The main difficulty is again the a priori
estimate on the approximated solutions u,. In some cases, a Pohozaev type identity applied to the approximated problem,
guarantees the boundness of the u, sequence and then the existence of a solution for the original problem, see e.g. [4]
and [2] in the case of nonlinear Schrédinger equation in RN,

In this Note we show that a Pohozaev type identity for the perturbed equation exists and that this constraint gives the
boundness of the perturbed solutions. Therefore, under the above mentioned hypotheses we have the following

Theorem 1 (main theorem). If (2), (3) hold then functional (4) has a mountain pass critical point.
In order to prove the main theorem we define the perturbed functional I(%,.) : H} £2)—>R
1 2
16w = 3 Il g, [ R, 7)

where the nonlinear term is weakly continuous in
H} (£2)= {u € Hg)(s?) such that u radially symmetric}.
Before to prove the main theorem some preliminaries are in order:

Proposition 1. If (2), (3) hold then functional (4) has a mountain pass geometry.

Proof. We notice simply that

p
HY ()

q

—callunly -

1 2
1) > 2l ) = €1 lunl

and that the sequence u, defined as follows
§o(Ixl —Rn+1)  for Ry — 1< [x| < Rp,

" o for Ry < [x] < 2Ry,

up(r) =

" £0(2Ry — [x|+ 1) for 2Ry, < |y| <2Rn +1,
0 for |x| > 2R, + 1,

where & is defined in (3) fulfills I(u,) < 0 for R, — oco. Indeed

/ |Vup?dx = 0(RY™1)
2

and
2Rp
/ G(up) dx = / N1 G(&)dr + O (RN ") = CG(&)RY + O(RY™T).
2 Rn

Since G(&p) > 0 it follows that I(uy) is negative for n large enough. O

We show now a Pohozaev type identity that is crucial for the a priori estimate.
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Lemma 1. Let u be a solution of

—Au+u=2AR'(u) on$ =B(0,R),

then we have

2(RVRN 2_N N
u ( ) + > /\lvu|2dX=_)\N/R(u)dX+E/|u|2dx
Q 2

2
Q

Proof. We write (1) using the radial symmetry of the solution

N-—-1
—u” - : u +u=AR(u), (8)

then we have

2
;lr <u F2N— 2) = (AR () — u)r2N -2,

We get

o0 1 d 2 o0 o0
_/rN 2dr<u r2N= 2) dr= /R/(u)rNu/dr—/urNu’dr,
R R R

and by integration by parts we have

u'2(R)RN T rd rd
?+(2—N)/7r"”1dr:k/a R(w)r Ndr — f@( lu| )rNdr,
R R R
and hence
"2(R)RN 2 —N N
: (2) +— /IVu|2dx:—NA/R(u)dx+§/|u|2dx. o
2 2

Lemma 2. Let (Ap, up) € R x H}(.Q) be a sequence such that VI(Ap,up) =0, Ap — 1 and I(Ay, uy) bounded. Then ||un||H; @ is
bounded.

Proof. Step I: ||un|p1.2(p) is bounded. We have thanks to Lemma 1

1
5/(|Vun|2+|u,1|2)c1><—AH/R(un)dxg1<,

Q
/Z(R)RN (9)
N /|Vun| dx=— /R(un)dx—i— /|un| dx.
By adding the equations we get
/2 N
R)R
% N / |Vun| dx <
Q
Step II: ||un|l;2(g) is bounded.
Thanks to (2) and the interpolation inequality we have
1
2 ap (1—a1)p a2q (1-a2)q
G tn) > 2 lunllFy ) = Cxdnllunll 300l ()P = Comnllunl3 lunll e ) (10)
wherealz%—¥ andazz%_g‘
The Sobolev inequality gives
1 2 arp (1—a1)p axq (1-a2)q
I(An, up) = i ||un||H;(_Q) - C1)\n||un||L2(Q) ||un||D1,2(Q) — C2Anllun ||,_2(_Q) llun ”DLZ(Q) . (11)

The fact that a1p <2 and azq <2 for any p, q > 2 proves the boundness of |lun|l;2(p). O
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Proof of the main theorem. Let u, be a sequence such that VI(An, uy) =0, A, — 1 and I(A,, uy) bounded. The existence of
such sequence is proved in [5]. The a priori estimate for u, is given by Lemma 2. There exist u such that u, — u a.e. and

by Strauss theorem [6] we have up to subsequences |[u, — u||r(2) =o0(1) for 2 < p < % We have

—Aup + Uy — R (up) = R (un) — R'(up) =0(1) in H1(£2),

and hence u;, is a Palais-Smale sequence for the functional I. Indeed by (2) we have

f(kn—l)R/(un)wdx < |An—1|<C1/|un|p’]|g0|dx+(:2/|un|q’1|¢|dx),
2 2 2

and hence

-1 -1

/ (= DR n)@ dx| < A0 = 1I(ctlltnll 7 o) 10111 (@) + C2lltnllffr o) 19111 (02)-
Q
Let us consider two functions u, and u,, in the PS sequence, by subtraction we get

—A(Uup — um) + (Up — Um) — (R/(Un) - R/(um)) -0,
and we obtain

2 2

/|V(un —um)|“dx+ /|(un —um)|“dx— /(R/(un) — R'(um)) (Uup — um) dx =0(1).

Q Q Q
Indeed by (2) we have

/|(R’<un>—R’(um>)<un—um>|dx<c1(f|un|"—‘|un—um|dx+/|um|"—1|un—um|dx)
2 2 2

+c2<f|un|q—1|un—um|dx+/|um|q—1|un—um|dx)=o(1).
2 2

Eventually we have

[|V(u,, —um)|2dx+/\(un—um)|2dx—>0,
2 2

i.e. u, is a Cauchy sequence in H} (£2). We obtain |ju, — ﬁ||H;(_Q) =o(1). O
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