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We consider the solutions of the Cauchy problem for a dyadic model of Euler equations.
We prove global existence and uniqueness of Leray–Hopf solutions in a rather large class
K that implies in particular global existence and uniqueness in l2 for all initial positive
conditions in l2.
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r é s u m é

Nous considérons les solutions du problème de Cauchy pour un modèle dyadique
d’équations d’Euler. Nous démontrons l’existence et l’unicité globales des solutions de
Leray–Hopf dans une classe K assez large, ce qui implique en particulier l’existence et
l’unicité dans l2 pour toute condition initiale positive dans l2.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This Note is concerned with the following infinite system of differential equations:

d

dt
Xn(t) = kn−1 X2

n−1(t) − kn Xn(t)Xn+1(t), t � 0, Xn(0) = xn, (1)

for n � 1, with 0 � kn � C2n for every n � 1, k0 = 0 and X0(t) = 0 for every t � 0. This system is usually called dyadic
model of turbulence. It has been introduced by Kats and Pavlovic in [6] (see also [5]) and studied in several works, including
[7,9,3,1]. When the initial condition x = (xn)n∈N is in H1 = {u = (un)n∈N: ‖u‖2

H1 := ∑
n k2

nu2
n < ∞}, a local unique solution

exists in this space. However, [7] proved that such regularity is lost in finite time. After the blow-up, we can only work in
the space H = l2.

Global existence of solutions is known in H . By solution in H on [0, T ) (global if T = +∞), we mean a sequence of
functions X = (Xn)n∈N defined on [0, T ) such that Xn ∈ C1([0, T );R) for all n, X satisfies system (1) and X(t) ∈ H for all
t ∈ [0, T ). However, uniqueness of such solutions is false, for general initial conditions x ∈ H , as shown in [1]. The aim of
this note is to prove uniqueness of solutions which belong to a special class. Only certain initial conditions x ∈ H give rise
to global solutions in this class. In particular, this is true when (almost) all components of x are non-negative. Thus, the
picture emerging from [1] plus the present note is that there is a large class of initial conditions with global existence and
uniqueness, and examples of initial conditions with multiple solutions.
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We remark that the idea of the proof is to use cancellations, instead of estimates of functional analytic nature as it is
usually done in infinite dimensions. From the functional analytic viewpoint, in order to see these cancellations, we need to
work in “negative order space”, namely with the expression

∑n
i=1 2−i Z 2

i (t) where Z is the difference between two solutions.
The energy inequality plays a role in our uniqueness result and, moreover, it is violated by the known counterexamples

to uniqueness (see [1]). Due to the importance of this issue, we end the note with a closer look to it. We prove in particular
the equivalence between weak and strong forms of energy inequality.

Finally, we remark that uniqueness, for all initial conditions, is restored by adding a suitable noise, see [2]. That result
partially motivated the present note and poses the following question: how large is the set of initial conditions for the de-
terministic system (1) which has uniqueness? Maybe the uniqueness under noise is related to the fact that non-uniqueness
holds only for special initial conditions. The result of this note is a first step in this direction, but the set H+ of initial
conditions that we identify is still small.

2. The theorem of uniqueness

Let us restrict the attention to solutions which satisfy an energy inequality, as initially proposed by [8] in the viscous
case. We start the discussion with the weak energy inequality and add comments in the next section on a stronger form.

Definition 2.1. A solution X on [0, T ) satisfies the weak energy inequality if
∥∥X(t)

∥∥
H �

∥∥X(0)
∥∥

H ∀t ∈ [0, T ). (2)

The existence of solutions with this property, for every x ∈ H , can be found in [1].

Definition 2.2. We call solution of class K any solution X = (Xn)n∈N such that the function

a(t) = sup
n∈N

(−kn Xn+1(t)
)

(3)

is locally integrable on [0,∞).

Our main result is the uniqueness of solutions of class K, satisfying (2).

Theorem 2.1. Let X (i) = (X (i)
n )n∈N , i = 1,2, be two solutions with the same initial condition x = (xn)n∈N ∈ H. Assume that X (i) are of

class K and they both satisfy the weak energy inequality. Then X (1) = X (2) .

Proof. By (2), we have
∣∣X (i)

n (t)
∣∣ �

√
E(0), (4)

for all n � 1, t � 0 and i = 1,2. We shall use this bound below. Let

Zn := X (1)
n − X (2)

n , Yn := X (1)
n + X (2)

n .

It is easy to check that for all n � 1, Zn(0) = 0 and for t � 0,

d

dt
Zn = kn−1 Zn−1Yn−1 − kn

2
(ZnYn+1 + Yn Zn+1).

This implies

d

dt
Z 2

n = 2kn−1Yn−1 Zn−1 Zn − knYn+1 Z 2
n − knYn Zn Zn+1.

The terms knYn+1 Z 2
n and kn+1Yn+2 Z 2

n+1 have a dissipative nature. The idea of the proof is to use cancellations to deal with
the more difficult terms −knYn Zn Zn+1 and 2knYn Zn Zn+1. But they differ by a factor −2. For this reason, instead of using
the classical quantity

∑n
i=1 Z 2

i (t), we introduce

ψn(t) :=
n∑

i=1

2−i Z 2
i (t).

Indeed

d Z 2
n
n

= kn−1Yn−1
Zn−1 Zn

n−1
− knYn+1

Z 2
n
n

− knYn
Zn Zn+1

n
,

dt 2 2 2 2
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so ψn(t) satisfies the simple equation

d

dt
ψn(t) = −

n∑
i=1

ki Yi+1
Z 2

i

2i
− kn

2n
Yn Zn Zn+1, ψn(0) = 0.

Since both solutions are of class K, denoted by a the maximum of the functions a(i) ’s defined by (3), we have −ki Yi+1(t) �
2a(t). Hence, using also |Zn+1| < 2

√
E(0), and kn � C2n , we have

d

dt
ψn(t) � 2a(t)ψn(t) + K Yn Zn � 2a(t)ψn(t) + K

(∣∣X (1)
n

∣∣2 + ∣∣X (2)
n

∣∣2)
.

From Gronwall lemma

0 � ψn(t) �
t∫

0

e
∫ t

s 2a(r) dr K
∑

i

∣∣X (i)
n (s)

∣∣2
ds � K ′(t)

∑
i

t∫

0

∣∣X (i)
n (s)

∣∣2
ds,

where K ′(t) is a positive constant for every t � 0. Since
∑

n

∫ t
0 |X (i)

n (s)|2 = ∫ t
0 E(i)(s)ds � t E(0), both integrals above (i = 1,2)

tend to zero as n → ∞, and ψn(t) as well. Since the latter is non-decreasing in n, we get that ψn(t) = 0 for every n, and
every t � 0. This implies Z ≡ 0. �

The essential question is now: which initial conditions give rise to global solutions satisfying the assumptions of the
previous theorem? We can exhibit a relevant class, H+ , which includes the class of positive initial conditions investigated
by many authors. Denote by H+ the set of all x ∈ H such that xn < 0 for at most a finite number of n’s. We can loosely say
that almost all components of x are positive. Next lemma shows that this class is (positively) invariant. Denote by S(t)x the
set of all values at time t of solutions with initial condition x. This defines a (possibly) multivalued map S(t) : H → P (H),
for all t � 0, where P (H) is the set of all parts of H . We may call S(t) the multivalued flow associated to the dyadic model.

Lemma 2.2. If X is a solution, j is a positive integer and s � 0, then

X j(s) � 0 
⇒ X j(t) � 0 for all t > s.

In particular S(t)H+ ⊂ H+ .

Proof. By the variation of constants formula, X j(t) = e A j(t) X j(s) + ∫ t
s e A j(t)−A j(θ)k j−1 X2

j−1(θ)dθ , where A j(t) =
− ∫ t

s k j X j+1(θ)dθ . �
We need also the following lemma which states that in H+ the energy cannot increase. Given a solution X , denote by

E(t) the energy at time t , E(t) = ∑∞
j=1 X2

j (t) and let En(t) = ∑n
j=1 X2

j (t).

Lemma 2.3. Let X be a solution. If, for some s � 0, X(s) ∈ H+ , then E(t) � E(s) for every t � s.

Proof. By Lemma 2.2, if X(s) ∈ H+ , there is an n0 such that Xn(θ) � 0 for every n � n0 and θ ∈ [s, t]. Since d
dt En =

−2kn X2
n Xn+1, we deduce d

dt En−1(θ) � 0 for all θ ∈ [s, t]. Hence En−1(t) � En−1(s), which implies, in the limit as n → ∞,
E(t) � E(s). �

By Lemma 2.2, if x ∈ H+ and X is a corresponding solution, then Xn(t) > 0 for all n larger than some n0 and all t � 0,
hence

a(t) � sup
n�n0

kn
∣∣Xn(t)

∣∣ � kn0 sup
n�n0

∣∣Xn(t)
∣∣ � kn0

√
E(t) � kn0

√
E(0),

where the last inequality is due to Lemma 2.3. Hence solutions starting in H+ are of class K and satisfy the weak energy
inequality. Therefore:

Corollary 2.4. If x ∈ H+ , system (1) has a unique global solution. In other words, S(t) is univalued on H+ .
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3. On the strong energy inequality

Definition 3.1. A solution X on [0, T ) satisfies the strong energy inequality if
∥∥X(t)

∥∥
H �

∥∥X(s)
∥∥

H ∀s, t ∈ [0, T ),with s < t. (5)

We call Leray–Hopf solution a solution that satisfies the strong energy inequality.

For the Euler equations, the two notions of weak and strong energy inequalities are not equivalent, see [4]. Even for the
Navier–Stokes equations (in 3D), it is only known the existence of solutions satisfying (2), and a weaker form of (5), namely
for every t > 0 and a.e. s ∈ [0, t]. In [4], for Euler equations, it is proved that even in the class of weak solutions satisfy-
ing (5), there are counterexamples to uniqueness. We complement the results of the previous section with the equivalence
between (2) and (5), for the dyadic model.

Lemma 3.1. If E(t) < E(s) for some t > s, then X(t) ∈ H+ .

Proof. By contradiction, if X(t) /∈ H+ , there is a sequence {nk}k such that for every k, Xnk (t) � 0, yielding Xnk (θ) � 0 for all
θ ∈ [s, t] (Lemma 2.2). Since d

dt En = −2kn X2
n Xn+1, we deduce d

dt Enk−1(θ) � 0 for all θ ∈ [s, t], so that Enk−1(t) � Enk−1(s).
Since En↑E , this implies E(t) � E(s). �
Theorem 3.2. A solution satisfies the weak energy inequality if and only if it satisfies the strong energy inequality.

Proof. Let X be a solution satisfying (2) and let 0 < s < t . From (2) we have both E(s) � E(0) and E(t) � E(0). If E(s) = E(0)

we are finished. Otherwise E(s) < E(0). So by Lemma 3.1, X(s) ∈ H+ , hence by Lemma 2.3, E(s) � E(t). The proof is com-
plete. �

Since we know existence of solutions with property (2), see [1], we immediately have:

Corollary 3.3. For all initial conditions x ∈ H, there exists a global Leray–Hopf solution to system (1).

Moreover, every solution with initial condition in H+ is a Leray–Hopf solution. Whether every Leray–Hopf solution is
of class K is an open question. We do not know counterexamples, since the example of non-uniqueness from [1] have
increasing energy.
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